37 | 0 | 33 |
下载次数 | 被引频次 | 阅读次数 |
光量子忆阻器可通过反射率可调的分束器实现,其中反射率依据出射光束的测量反馈进行动态调整。先前报道的光量子忆阻器展示出了捏滞曲线如何随积分区间的变化而演变,但其捏滞曲线的叶片面积并不受输入信号频率的影响。鉴于此,提出了一种利用移相器中的相位偏移作为状态变量构建的新型光量子忆阻器。新的光量子忆阻器受输入信号的频率影响,展现出与经典忆阻器相似的特性,其捏滞曲线随输入频率的增加而趋向于一条直线。对光量子忆阻器的类脑突触特性进行深入分析验证了其在模拟人工突触功能方面的可行性与潜力。基于条件反射理论,设计了一种能够实现全功能巴甫洛夫联想记忆结构的方案,并通过详尽的模拟实验对该结构的正确性与有效性进行了验证。
Abstract:The optical quantum memristor is achieved through a beam splitter with adjustable reflectivity, where the reflectivity is dynamically adjusted based on the measurement feedback of the outgoing light beam. Previously reported optical quantum memristors have demonstrated how the hysteresis curve evolves with changes in the integration interval, but the area of the hysteresis curve is not influenced by the frequency of the input signal. In light of this, a novel optical quantum memristor is proposed, which utilizes the phase shifter to construct the state variable. The new optical quantum memristor is influenced by the frequency of the input signal and exhibits characteristics similar to classical memristors, with its hysteresis curve approaching a straight line as the input frequency increases. An in-depth analysis of the brain-like synaptic characteristics of the optical quantum memristor is also conducted, confirming its feasibility and potential in simulating artificial synaptic functions. Finally, based on the theory of conditioned reflexes, a scheme for a fully functional Pavlovian associative memory structure is proposed, of which the correctness and effectiveness are verified through comprehensive simulation experiments.
[ 1 ] Tang Y,Nyengaard J R,de Groot D M,et al.Total regional and global number of synapses in the human brain neocortex[J].Synapse,2001,41(3):258-273.
[ 2 ] Gertrudis P,Mavarrete N,and Alfonso A.Tripartite synapses:Astrocytes process and control synaptic information[J].Trends in Neurosciences,2009,32(8):421-431.
[ 3 ] KornijcukV,Kavehei O,Lim H,et al.Multiprotocol-induced plasticity in artificial synapses[J].Nanoscale,2014,6(24):15151-15160.
[ 4 ] Chua L O.Memristor-the missing circuit element[J].IEEE Transactions on Circuit Theory,1971,18(5):507-519.
[ 5 ] Strukov D B,Snider G S,Stewart D R,et al.The missing memristor found[J].Nature,2008,453:80-83.
[ 6 ] Zhang Y,Wang C,Wu X Y.Review of electrical stimulus methods of in situ transmission electron microscope to study resistive random access memory[J].Nanoscale,2022,14(27):9542-9552.
[ 7 ] Wang H Z,Wang J J,Hu H,et al.Ultra-high-speed accelerator architecture for convolutional neural network based on processing-in-memory using resistive random access memory[J].Sensors,2023,23(5):2401.
[ 8 ] Shi D L,Wang W H,Liang Y Z,et al.Ultralow energy consumption angstrom-fluidic memristor[J].Nano Letters,2023,23(24):11662-11668.
[ 9 ] Lai Q X,Zhang L,Li Z Y,et al.Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions[J].Advanced Materials,2010,22(22):2448-2453.
[10] Ohno T,Hasegawa T,Tsuruoka T,et al.Short-term plasticity and long-term potentiation mimicked in single inorganic synapses[J].Nature Materials,2011,10(8),591-595.
[11] Josberger E E,Deng Y X,Sun W,et al.Two-terminal protonic devices with synaptic-like short-term depression and device memory[J].Advanced Materials,2014,26(29):4986-4990.
[12] Chen X,Huang Z X,Burgt Y V D,et al.Introduction to memristors and neuromorphic systems[J].Materials Horizons,2014,11(15):3462-3464.
[13] Liu L,Dananjaya P A,Ang C C I,et al.A bi-functional three-terminal memristor applicable as an artificial synapse and neuron[J].Nanoscale,2023,15(42):17076-17084.
[14] Yang X Y,Taylor B,Wu A L,et al.Research progress on memristor:From synapses to computing systems[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2022,69(5):1845-1857.
[15] Zhu X J,Du C,Zheng Y Z,et al.Emulation of synaptic metaplasticity in memristors[J].Nanoscale,2017,9(1):45-51.
[16] Li J Y,Qian Z Y,Li W,et al.Polymeric memristor based artificial synapses with ultra-wide operating temperature [J].Advanced Materials,2023,35(23):2209728.
[17] Li L,Gan D Q,Wei Y H,et al.A SmNiO3 memristor with artificial synapse function properties and the implementation of Boolean logic circuits[J].Nanoscale,2023,15(15):7105-7114.
[18] Ling Y F,Li J X,Tao L,et al.MoS2-based memristor:Robust resistive switching behavior and reliable biological synapse emulation[J].Nanomaterials,2023,13(24):2079-4991.
[19] Hong Q H,Li Y,and Wang X P.Memristive continuous hopfield neural network circuit for image restoration[J].Neural Computing and Applications,2020,32(12):8175-8185.
[20] Sun B,Chen Y Z,Zhou G D,et al.Memristor-based artificial chips[J].ACS Nano,2024,18(1):14-27.
[21] Pfeiffer P,Egusquiza I L,Di Ventra M,et al.Quantum memristors[J].Scientific Reports,2016,6(1):29507.
[22] Salmilehto J,Deppe F,Di Ventra M,et al.Quantum memristors with superconducting circuits[J].Scientific Reports,2017,7(1):42044.
[23] Sanz M,Lamata L,and Solano E.Quantum memristors in quantum photonics[J].APL Photonics,2018,3(8):080801.
[24] Tasio G R,Joseph M L ,Lucas C C,et al.Quantum memristors in frequency-entangled optical fields[J].Materials,2020,13(4):864.
[25] Spagnolo M,Morris J,Piacentini S,et al.Experimental photonic quantum memristor[J].Nature Photonics,2022,16(4):318-323.
[26] Chang T,Jo S H,Lu W.Short-term memory to long-term memory transition in a nanoscale memristor[J].ACS Nano,2011,5(9):7669-7676.
[27] Kandel E R.The molecular biology of memory storage:A dialogue between genes and synapses[J].Science,2001,294(5):1030-1038.
[28] Lynn E,Dobrunz,Charles,et al.Heterogeneity of release probability,facilitation,and depletion at central synapses[J].Neuron,1997,18(6):995-1008.
[29] Bao J X,Kandel E R,Hawkins R D.Involvement of pre- and postsynaptic mechanisms in posttetanic potentiation at Aplysia synapses[J].Science,1997,275(5302):969-973.
[30] Lamprecht R,Ledoux J.Structural plasticity and memory[J].Nature Reviews Neuroscience,2004,5(1):45-54.
[31] Rescorla R A.Pavlovian conditioning:It’s not what you think it is[J].American Psychologist,1988,43(3):151-160.
[32] Rescorla R A.Behavioral studies of Pavlovian conditioning[J].Annual Review of Neuroscience,1988,11(1):329-352.
[33] 董哲康,钱智凯,周广东,等.基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析[J].电子与信息学报,2022,44(6):2080-2092.
基本信息:
DOI:
中图分类号:TN60
引用信息:
[1]李威,代广珍.相移光量子忆阻器及突触特性研究[J].山东师范大学学报(自然科学版),2024,39(04):331-338.
基金信息:
国家自然科学基金资助项目(62174001); 安徽省教育厅自然科学基金重点资助项目(2023AH050922)