山东师范大学数学与统计学院;
函数列及函数项级数的一致收敛性判定是数学分析中的重点难点,对研究函数列的极限函数的连续性、可导性和可积性等起着重要的作用.首先对二元函数列和二元函数项级数一致收敛的定义及其一致收敛的判定方法进行简单说明,然后运用数形结合的思想方法,借助MATLAB软件将具体函数列直观刻画出来,展示其一致收敛的动态过程,揭示其收敛的本质特征,给出二元函数列和二元函数项级数一致收敛的一种新的判定方法.数学软件的应用,能够帮助学生有效利用数形结合的思想对函数列的一致收敛性问题进行直观地分析.这对判断函数列和函数项级数在特定区域内是否一致收敛具有重要意义.
2,295 | 0 | 11 |
下载次数 | 被引频次 | 阅读次数 |
[1] 华东师范大学数学系.数学分析(下册)(第三版)[M].北京:高等教育出版社,2001:1-66.
[2] 刘玉琏,傅沛仁.数学分析讲义(下册)(第五版)[M].北京:高等教育出版社,2008:46-77.
[3] 陈纪修,於崇华.数学分析(下册)(第二版)[M].北京:高等教育出版社,2004:55-82.
[4] 李苓玉,范进军.函数项级数一致收敛性及其应用[J].山东师范大学学报:自然科学版,2016,31(4):12-19.
[5] 谢宁新.MATLAB在函数序列一致收敛性中的应用[J].广西民族学院学报:自然科学版,2000,6(2):117-119.
[6] 刘雪英.《数学分析》课程教学方法改革的思考 [J].内蒙古师范大学学报:教育科学版,2013,26(1):126-128.
[7] 刘秀梅.函数列在不同区间上一致收敛性的研究[J].大学数学,2008,24(6):160-164.
[8] 陈妙玲.函数项级数一致收敛判别法[J].长春理工大学学报,2010,5(6):29-30.
[9] 王飞,费时龙.多元函数项级数的一致收敛及性质[J].数学学习与研究,2019,(3):17.
基本信息:
DOI:
中图分类号:O171
引用信息:
[1]李萌,范进军.函数列一致收敛性及其应用[J].山东师范大学学报(自然科学版),2020,35(04):402-412.
基金信息:
国家自然科学基金资助项目(11971275);; 山东省自然科学基金资助项目(ZR2019MA048)