nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2021, 04, v.36 325-336
基于深度神经网络的推荐系统研究综述
基金项目(Foundation): 国家自然科学基金资助项目(61772321); 山东省自然科学基金重点项目(ZR202011020044)
邮箱(Email):
DOI:
摘要:

在信息过载时代,从海量信息中寻找感兴趣的信息是一件非常困难的事.推荐系统可以从大数据中挖掘用户的偏好信息,从而向用户提供精确的个性化推荐服务.近年来,深度神经网络在推荐系统中得到了广泛的应用,具有独特的特征提取能力.本文对推荐系统进行梳理,在讨论传统推荐算法的基础上,综述了基于深度神经网络的推荐系统的研究进展,分析了与传统推荐方法的区别与优势,归纳了推荐系统的性能评价指标.介绍了所提出的三个基于深度学习的推荐模型.并对推荐系统的未来发展趋势进行展望.

Abstract:

In the age of information overload, it is very difficult to find information that interests oneself from a large amount of information. To provide users with accurate personalized recommendation services, the recommendation system is used to mine user preference information from big data. In recent years, deep neural networks have been widely used in recommendation system and have excellent feature extraction capabilities. Therefore, this paper first sorts out the concept of recommendation system, and reviews the research progress of recommendation systems based on neural networks, and analyzes their differences and advantages against traditional recommendation methods. Then, the performance evaluation index of the recommendation system is summarized. Finally, we introduce three recommendation models proposed by us and forecast the future development trend of recommendation system.

参考文献

[ 1 ] Resnick P,Varian H R.Recommender systems[J].Communications of the Acm,1997,40(3):56-58.

[ 2 ] Francesco R,Lior R,Bracha S.Introduction to Recommender Systems Handbook[M].Recommender Systems Handbook.Springer,2011:1-35.

[ 3 ] Raza S,Ding C.Progress in context-aware recommender systems-An overview[J].Computer Science Review,2019,31:84-97.

[ 4 ] Michael D E,John T R,Joseph A K,et al.Collaborative filtering recommender systems[J].Human-Computer Interaction,2011,4(2):81–173.

[ 5 ] Jonathan L H,Joseph A K,John R.Explaining collaborative filtering recommendations[C].ACM Conference on Computer Supported Cooperative Work,2011:241–250.

[ 6 ] Pan Y,He F,Yu H.A novel enhanced collaborative autoencoder with knowledge distillation for top-N recommender systems[J].Neurocomputing,2019,332:137-148.

[ 7 ] Fang H,Guo G,Zhang D,et al.Deep learning-based sequential recommender systems:concepts,algorithms,and evaluations[C].International Conference on Web Engineering,Springer,Cham,2019:574-577.

[ 8 ] Yehuda K.Factorization meets the neighborhood:a multifaceted collaborative filtering model[C].In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2008:426-434.

[ 9 ] Yehuda K,Robert B,Chris V.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37.

[10] Yi B,Shen X,Liu H,et al.Deep matrix factorization with implicit feedback embedding for recommendation system[J].IEEE Transactions on Industrial Informatics,2019,15(8):4591-4601.

[11] Salakhutdinov R,Mnih A,Hinton G.Restricted Boltzmann machines for collaborative filtering[C].Proceedings of the 24th International Conference on Machine Learning,2007:791-798.

[12] 王科强.基于矩阵分解的个性化推荐系统[D].上海:华东师范大学,2017.

[13] Wang H,Zhao M,Xie X,et al.Knowledge graph convolutional networks for recommender systems[C].The World Wide web Conference,2019:3307-3313.

[14] Milano S,Taddeo M,Floridi L.Recommender systems and their ethical challenges[J].AI & SOCIETY,2020:1-11.

[15] Varga E.Recommender Systems[M].Practical Data Science with Python 3.Apress,Berkeley,CA,2019:317-339.

[16] Coates A,Ng A,Lee H.An analysis of single-layer networks in unsupervised feature learning[C].Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,2011:215-223.

[17] Salakhutdinov R,Hinton G E.Deep Boltzmann machines[C].In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics,2009:448-455.

[18] Georgiev K,Nakov P.A non-iid framework for collaborative filtering with restricted Boltzmann machines[C].International Conference on Machine Learning,2013:1148-1156.

[19] Wang J,Ding K,Hong L,et al.Next-item recommendation with sequential hypergraphs[C].Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval,2020:1101-1110.

[20] Chen T,Yin H,Chen H,et al.Air:Attentional intention-aware recommender systems[C].2019 IEEE 35th International Conference on Data Engineering (ICDE),IEEE,2019:304-315.

[21] Cui Z,Xu X,Fei X U E,et al.Personalized recommendation system based on collaborative filtering for IoT scenarios[J].IEEE Transactions on Services Computing,2020,13(4):685-695.

[22] Wu Y,DuBois C,Zheng A X,et al.Collaborative denoising auto-encoders for top-n recommender systems[C].Proceedings of the Ninth ACM International Conference on Web Search and Data Mining,2016:153-162.

[23] Li S,Kawale J,Fu Y.Deep collaborative filtering via marginalized denoising auto-encoder[C].Proceedings of the 24th ACM International on Conference on Information and Knowledge Management,2015:811-820.

[24] Wang H,Shi X,Yeung D Y.Relational stacked denoising autoencoder for tag recommendation[C].The Associationfor the Advance of Artificial Intelligence,2015:3052-3058.

[25] Strub F,Gaudel R,Mary J.Hybrid recommender system based on autoencoders[C].Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,2016:11-16.

[26] 张敏,丁弼原,马为之.基于深度学习加强的混合推荐方法[J].清华大学学报:自然科学版,2017,(10):9-16.

[27] You J,Wang Y,Pal A,et al.Hierarchical temporal convolutional networks for dynamic recommender systems[C].The World Wide Web Conference,2019:2236-2246.

[28] Chung J,Gulcehre C,Cho K H,et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J].2014:arXiv preprint arXiv:1412.3555.

[29] Cui Z,Xu X,Xue F,et al.Personalized recommendation system based on collaborative filtering for IoT scenarios[J].IEEE Transactions on Services Computing,2020.

[30] Zheng L,Noroozi V,Yu P S.Joint deep modeling of users and items using reviews for recommendation[C].Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,ACM,2017:425-434.

[31] Zhou J,Albatal R,Gurrin C.Applying visual user interest profiles for recommendation and personalisation[C].International Conference on Multimedia Modeling,2016:361-366.

[32] Huang Z,Xu X,Zhu H,et al.An efficient group recommendation model with multiattention-based neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2020,31(11):4461-4474.

[33] Naumov M,Mudigere D,Shi H J M,et al.Deep learning recommendation model for personalization and recommendation systems[J].2019:eprint arXiv:1906.00091.

[34] Seo S,Huang J,Yang H,et al.Interpretable convolutional neural networks with dual local and global attention for review rating prediction[C].Proceedings of the Eleventh ACM Conference on Recommender Systems,2017:297-305.

[35] Zhang F,Yuan N J,Lian D,et al.Collaborative knowledge base embedding for recommender systems[C].Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,ser.KDD ′16.New York,NY,USA:ACM,2016:353-362

[36] Guo Q,Zhuang F,Qin C,et al.A survey on knowledge graph-based recommender systems[J].IEEE Transactions on Knowledge and Data Engineering,2020.

[37] Wang X,He X,Cao Y,et al.Kgat:Knowledge graph attention network for recommendation[C].Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2019:950-958.

[38] Zhou K,Zhao W X,Bian S,et al.Improving conversational recommender systems via knowledge graph based semantic fusion[C].Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2020:1006-1014.

[39] Zhou S,Dai X,Chen H,et al.Interactive recommender system via knowledge graph-enhanced reinforcement learning[C].Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval,2020:179-188.

[40] Palumbo E,Monti D,Rizzo G,et al.entity2rec:Property-specific knowledge graph embeddings for item recommendation[J].Expert Systems with Applications,2020,151:113235.

[41] 黄立威,江碧涛,吕守业.基于深度学习的推荐系统研究综述[J],计算机学报,2018,427(07):191-219.

[42] Yin R,Li K,Zhang G,et al.A deeper graph neural network for recommender systems[J].Knowledge-Based Systems,2019,185:105020.

[43] 张岐山,翁丽娟.社会化推荐系统综述[J].计算机工程与应用,2020,56(1):1-10.

[44] Chen W,Cai F,Chen H,et al.Joint neural collaborative filtering for recommender systems[J].ACM Transactions on Information Systems (TOIS),2019,37(4):1-30.

[45] Swets J A.Information retrieval systems[J].Journal of Family Practice,1963,141(3577):245-250.

[46] Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[J].Uncertainty in Artificial Intelligence,2013,98(7):43-52.

[47] Tan Q,Liu F.Recommendation based on users′long-term and short-term interests with attention[J].Mathematical Problems in Engineering,2019.

[48] Xing S,Liu,F A,Wang Q,et al.Content-aware point-of-interest recommendation based on convolutional neural network[J].Applied Intelligence,2018.

[49] Xing S,Liu F,Wang Q,et al.A hierarchical attention model for rating prediction by leveraging user and product reviews[J].Neurocomputing,2019,332:417-427.

[50] Zhou Z Y,Liu F A,Filter gate network based on multi-head attention for aspect-level sentiment classification[J].Neurocomputing,2021,441:214-225.

基本信息:

DOI:

中图分类号:TP391.3;TP183

引用信息:

[1]刘方爱,王倩倩,郝建华.基于深度神经网络的推荐系统研究综述[J].山东师范大学学报(自然科学版),2021,36(04):325-336.

基金信息:

国家自然科学基金资助项目(61772321); 山东省自然科学基金重点项目(ZR202011020044)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文