11 | 0 | 9 |
下载次数 | 被引频次 | 阅读次数 |
针对现有的忆阻仿真器工作频率低、范围小,且有源结构静态功耗高等劣势,设计了一种基于互补金属氧化物半导体(CMOS)的新型无源忆阻仿真器,采用130 nm工艺在Candence Virtuoso中实现了新型忆阻仿真器电路,仿真结果显示出显著的忆阻特性,且输入信号频率达300 MHz时依然有明显的捏滞曲线,PVT测试也显示出较强的稳定性。新型无源忆阻仿真器利用PN结和小电阻在信号输入时的压降使MOS管有效导通,消除了偏置电源,从而能够在浮地模式下良好运行,实现了零静态功耗。在面包板上,利用商用元件搭建了实物电路,测试结果显示出了忆阻器的捏滞回线,验证了电路可行性。运用新型无源忆阻器的比例逻辑结构(MRL)设计的逻辑门构建了上升沿D触发器,在此基础上设计了2 bits和4 bits的线性反馈移位寄存器(LFSR),并进一步设计了可自启动的计数器,仿真结果验证了电路功能的正确性,从而说明了新型无源忆阻仿真器在数字电路设计中的可行性。
Abstract:In addressing the limitations of existing memristor emulators, such as low operating frequency, narrow range, and high static power consumption in active structures, a novel passive memristor emulator based on complementary metal-oxide-semiconductor(CMOS) technology was developed. The new memristor emulator circuit was implemented using a 130 nm process in Cadence Virtuoso. Simulation results demonstrated significant memristive characteristic, with distinct pinched hysteresis curves observed even at an input signal frequency of 300 MHz. PVT(process, voltage, temperature) tests also indicated strong stability. The novel passive memristor emulator leverages the voltage drop across PN junctions and small resistors during signal input to effectively turn on MOS transistors, eliminating the need for bias power supplies and enabling operation in a floating ground mode, thereby achieving zero static power consumption. A prototype circuit was assembled on a breadboard using commercial components, and test results exhibited the pinched hysteresis loops characteristic of memristors, validating the circuit′s feasibility. Utilizing the memristive ratioed logic(MRL) structure of the novel passive memristor, logic gates were designed to construct a rising-edge D flip-flop. Based on this, 2-bit and 4-bit linear feedback shift registers(LFSRs) were designed, and a self-starting counter was further developed. Simulation results confirmed the correctness of the circuit functions, thereby demonstrating the feasibility of the novel passive memristor emulator in digital circuit design.
[ 1 ] Chua L.Memristor-the missing circuit element[J].IEEE Transactions on Circuit Theory,1971,18(5):507-519.
[ 2 ] Strukov D B,Snider G S,Stewart D R,et al.The missing memristor found[J].Nature,2008,453(7191):80-83.
[ 3 ] Kvatinsky S,Wald N,Satat G,et al.MRL—Memristor ratioed logic[C]//2012 13th International Workshop on Cellular Nanoscale Networks and Their Applications.Piscataway,USA,2012:1-6.
[ 4 ] Ghosh M,Singh A,Borah S S,et al.MOSFET-based memristor for high-frequency signal processing[J].IEEE Transactions on Electron Devices,2022,69(5):2248-2255.
[ 5 ] Ranjan R K,Rani N,Pal R,et al.Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application[J].Microelectronics Journal,2017,60:119-128.
[ 6 ] Vista J,Ranjan A.Flux controlled floating memristor employing VDTA:incremental or decremental operation[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2020,40(2):364-372.
[ 7 ] Vista J,Ranjan A.A simple floating MOS-memristor for high-frequency applications[J].IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2019,27(5):1186-1195.
[ 8 ] Ye?il A,Babacan Y,Ka?ar F.Design and experimental evolution of memristor with only one VDTA and one capacitor[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2018,38(6):1123-1132.
[ 9 ] Kumar P,Makhdoomi B S,Verma J S,et al.Experimental validation of a high-frequency memristor emulator based on CCCCTA framework and its application in chaos circuit[J].AEU-International Journal of Electronics and Communications,2025,190:155624.
[10] Kumar P,Srivastava P,Ranjan R K,et al.New zero power memristor emulator model and its application inmemristive neural computation[J].IEEE Access,2023,11:5609-5616.
[11] Gupta R K,Choudhry M S,Saxena V.A passive floating C-MOS memristor with analog applications[C]//2024 2nd International Conference on Device Intelligence,Computing and Communication Technologies (DICCT).IEEE,2024:22-27.
[12] Wu S,Shi G,Huang Y,et al.A simple passive floating memristor emulator circuit[J].AEU-International Journal of Electronics and Communications,2024,177:155231.
[13] Shi G,Wang C,Qiao F,et al.A new passive non-ideal floating memristor emulator circuit[J].AEU-International Journal of Electronics and Communications,2023,170:154823.
[14] Gupta R K,Chaudhary M S,Taran S,et al.A passive grounded MOSCAP-memrisor emulator[C]//2022 IEEE International Conference on Electronics,Computing and Communication Technologies (CONECCT).Bangalore,India,2022:1-5.
[15] Gupta R K,Choudhry M S,Saxena V,et al.A single MOS-memristor emulator circuit[J].Circuits,Systems,and Signal Processing,2024,43(1):54-73.
[16] Teng L,Wang X,Ye X.Hyperchaotic behavior in the novel memristor-based symmetric circuit system[J].IEEE Access,2020,8:151535-151545.
[17] Pu Y F,Yu B,He Q Y,et al.Fracmemristor oscillator:fractional-order memristive chaotic circuit[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2022,69(12):5219-5232.
[18] Sun S Y,Xu H,Li J,et al.Cascaded architecture for memristor crossbar array based larger-scale neuromorphic computing[J].IEEE Access,2019,7:61679-61688.
[19] Fan S,Lu Z,Ma W,et al.Alow-power sensing system architecture 2ith Mott memristor and time-to-digital converter for large-scale sensor-array application[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2023,70(10):3842-3846.
[20] 董哲康,钱智凯,周广东,等.基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析[J].电子与信息学报,2022,44(6):2080-2092.
[21] Yang X,Taylor B,Wu A,et al.Research progress on memristor:from synapses to computing systems[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2022,69(5):1845-1857.
[22] Zhu X,Du C,Jeong Y J,et al.Emulation of synaptic metaplasticity in memristors[J].Nanoscale,2017,9(1):45-51.
[23] Li J,Qian Y,Li W,et al.Polymeric memristor based artificial synapses with ultra-wide operating temperature[J].Advanced Materials,2023,35(23):2209728.
[24] Li L,Yu D,Wei Y,et al.A SmNiO3 memristor with artificial synapse function properties and the implementation of Boolean logic circuits[J].Nanoscale,2023,15(15):7105-7114.
[25] Dai G,Xie W,Du X,et al.Memristor-based D-flip-flop design and application in built-in self-test[J].Electronics,2023,12(14):3019.
[26] Dai G,Du X,Xie W,et al.Circuit design of 3-and 4-bit flash analog-to-digital converters based on memristors[J].Electronics,2023,12(19):4069.
[27] 代广珍,赵振宇,宋兴文,等.忆阻器混合逻辑电路设计及其应用[J].中国科学:信息科学,2023,53:178-190.
[28] 宋兴文.逆忆阻仿真器低频优化及其混沌电路应用[D].芜湖:安徽工程大学,2023.
[29] 李文娟.基于忆阻器的超混沌系统研究及其图像加密应用[D].芜湖:安徽工程大学,2024.
基本信息:
DOI:
中图分类号:TN60
引用信息:
[1]杨思浩,代广珍.无源甚高频忆阻仿真器设计及计数器实现[J].山东师范大学学报(自然科学版),2025,40(03):271-282.
基金信息:
安徽省教育厅自然科学基金重点资助项目(批准号:2023AH050922); 安徽省车载显示集成系统工程研究中心与安徽省触摸显示材料与器件联合学科重点实验室联合开放资助项目(批准号:VDIS2023B03、VDIS2023B04、VDIS&TDMD2024B04)