2024 03 v.39;No.167 193-209
第一性原理研究太阳能电池和光催化水解析氢二维异质结性能
基金项目(Foundation):
国家自然科学基金资助项目(12374232)
邮箱(Email):
DOI:
中文作者单位:
鲁东大学物理与光电工程学院;
摘要(Abstract):
基于第一性原理计算研究异质结太阳能电池和光催化水解析氢的载流子转移机理、效率和非绝热动力学等方面都取得了较多成果。虽然还存在准确性方面的局限,但基本建立起了结构和性能的关系,能够对异质结的太阳能转氢率和太阳能电池的能量转换率进行理论预测,为实验制备提供候选物和设计思路。本文主要关注基于第一性原理计算研究异质结方法及其应用的进展,总结不同类型的异质结的能带排列及电荷转移机制方面的特点及理论评估其性能的方法,并讨论基于原子结构设计调控异质结性能的方式,展望了第一性原理计算在发展光催化及太阳能电池材料中的应用前景,为通过计算研究基于异质结的光催化剂和太阳能电池材料的微观结构提供方法和思路。
关键词(KeyWords):
异质结;;太阳能电池;;光催化;;水解析氢;;非绝热动力学
112 | 0 | 25 |
下载次数 | 被引频次 | 阅读次数 |
参考文献
[ 1 ] Ishaq H,Dincer I,C Crawford.A review on hydrogen production and utilization:challenges and opportunities[J].International Journal of Hydrogen Energy,2022,47(62):26238-26264.
[ 2 ] Lubitz W,Tumas W.Hydrogen:An overview[J].Chemical Reviews,2007,107(10):3900-3903.
[ 3 ] Briguglio,Andaloro,Ferraro M,et al.Renewable energy for hydrogen production and sustainable urban mobility[J].International Journal of Hydrogen Energy,2010,35(18):9996-10003.
[ 4 ] Wang F,Deng S,Zhao J,et al.Performance and economic assessments of integrating geothermal energy into coal-fired power plant with CO2 capture[J].Energy,2017,119:278-287.
[ 5 ] Khan N,Kalair A,Abas N,et al.Review of ocean tidal,wave and thermal energy technologies[J].Renewable and Sustainable Energy Reviews,2017,72:590-604.
[ 6 ] 国家能源局.氢能产业发展中长期规划(2021-2035年)[M].北京:中国国家能源局,2021.
[ 7 ] Xue J,Bao J.Interfacial charge transfer of heterojunction photocatalysts:Characterization and calculation[J].Surfaces and Interfaces,2021,25:101265.
[ 8 ] Pacchioni G.First principles calculations on oxide-based heterogeneous catalysts and photocatalysts:Problems and advances[J].Catalysis Letters,2015,145:80-94.
[ 9 ] Wang R,Mujahid M,Duan Y,et al.A review of perovskites solar cell stability[J].Advanced Functional Materials,2019,29(47):1808843.
[10] Lee T D,Ebong A U.A review of thin film solar cell technologies and challenges[J].Renewable and Sustainable Energy Reviews,2017,70:1286-1297.
[11] Fu C F,Sun J,Luo Q,et al.Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting[J].Nano Letters,2018,18(10):6312-6317.
[12] Fan Y,Ma X,Wang J,et al.Highly-efficient overall water splitting in 2D Janus group-III chalcogenide multilayers:the roles of intrinsic electric filed and vacancy defects[J].Science Bulletin,2020,65(1):27-34.
[13] ?z?elik V O,J G Azadani,Yang C,et al.Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching[J].Physics Review B,2016,94:035125.
[14] Luo M,Lu C,Liu Y,et al.Band alignment of type-I SnS2/Bi2Se3 and type-II SnS2/Bi2Te3 van der Waals heterostructures for highly enhanced photoelectric responses[J].Science China Materials,2022,65:1000-1011.
[15] Luo Y,Chen G,Chen S,et al.Carrier transport enhancement mechanism in highly efficient antimony selenide thin-film solar cell[J].Advanced Functional Materials.2023,33:2213941.
[16] Li X,Zhao J,Yang J.Semihydrogenated BN sheet:A promising visible-light driven photocatalyst for water splitting[J].Scientific Reports,2013,3(1):1858.
[17] Afzal A M,Iqbal M Z,Dastgeer G,et al.Ultrafast and highly stable photodetectors based on p-GeSe/n-ReSe2 heterostructures[J].ACS Appllied Materials Interfaces,2021,13:47882-47894.
[18] Qi T,Gong Y,Li A,et al.Interlayer transition in a vdW heterostructure toward ultrahigh detectivity shortwave infrared photodetectors[J].Advanced Functional Materials.2020,30:1905687.
[19] Lei C,Ma Y,Xu X,et,al.Broken-gap type-Ⅲ and alignment in WTe2/HfS2 van der Waals heterostructure[J].Journal of Physical Chemistry C,2019,123:23089-23095.
[20] Cong X,Zheng Y,Huang F,et al.Efficiently band-tailored type-III van der Waals heterostructure for tunnel diodes and optoelectronic devices[J].Nano Research,2022,15(9):8442-8450.
[21] Wang Z,Zhu W.Tunable band alignments in 2D ferroelectric α-In2Se3 based Van der Waals heterostructures[J].Advances Electronic Materials,2021,7:2001174.
[22] Bader R F W,Nguyen-Dang T T.Quantum theory of atoms in molecules-Dalton revisited[J].Advances in Quantum Chemistry,1981,14:63-124.
[23] Zhang W X,Yin Y,He C.Spontaneous enhanced visible-light-driven photocatalytic water splitting on novel type-II GaSe/CN and Ga2SSe/CN vdW heterostructures[J].The Journal of Physical Chemistry Letters,2021,12(21):5064-5075.
[24] Kudo A,Miseki Y.Heterogeneous photocatalyst materials for water splitting[J].Chemical Society Reviews,2009,38(1):253-278.
[25] Sun R,Yang C L,Wang M S,et al.High solar-to-hydrogen efficiency photocatalytic hydrogen evolution reaction with the HfSe2/InSe heterostructure[J].Journal of Power Sources,2022,547:232008.
[26] Fan Y,Song X,Ai H et al.Highly efficient photocatalytic CO2 reduction in two-dimensional ferroelectric CuInP2S6 bilayers[J].ACS Applied Materials & Interfaces,2021,13(29):34486-34494.
[27] Scharber,Markus C,et al.Design rules for donors in bulk-heterojunction solar cells-Towards 10% energy-conversion efficiency[J].Advanced Materials,2006,18.6:789-794.
[28] Gueymard C A,Myers D,Emery K.Proposed reference irradiance spectra for solar energy systems testing[J].Solar Energy,2002,73(6):443-467.
[29] Liu H Y,Yang C L,Wang M S,et al.The high power conversion efficiency of a two-dimensional GeSe/AsP van der Waals heterostructure for solar energy cells[J].Physical Chemistry Chemical Physics,2021,23(10):6042-6050.
[30] Sun R,Yang C L,Wang M S,et al.Two-dimensional Sc2CCl2/SiS2 van der Waals heterostructure with high solar power conversion efficiency[J].Applied Surface Science,2022,591:153232.
[31] Wan X Q,Yang C L,Li X H,et al.Heterostructures stacked with X2SY (X= In,Ga;Y= Se,Te) and g-C2N monolayers for high power conversion efficiency solar cells:insight from electronic properties and nonadiabatic dynamics[J].Journal of Materials Chemistry A,2024,2024,d4ta01263a.
[32] Wang F,Yang C L,Wang M S,et al.Photocatalytic hydrogen evolution reaction with high solar-to-hydrogen efficiency driven by the Sb2S3 monolayer and RuI2/Sb2S3 heterostructure with solar light[J].Journal of Power Sources,2022,532:231352.
[33] Wang F,Yang C L,Wang M S,et al.PtTe2/Sb2S3 nanoscale heterostructures for the photocatalytic direct Z-scheme with high solar-to-hydrogen efficiency:a theoretical investigation[J].ACS Applied Nano Materials,2023,6(7):5591-5601.
[34] Sun R,Yang C L,Wang M S,et al.Sc2CCl2/WX2 (X=Se,Te) van der Waals heterostructures for photocatalytic hydrogen and oxygen evolutions with direct Z-schemes[J].International Journal of Hydrogen Energy,2023,48(98):38699-38707.
[35] Wan X Q,Yang C L,Wang M S,et al.Efficient photocatalytic hydrogen evolution and CO2 reduction by HfSe2/GaAs3 and ZrSe2/GaAs3 heterostructures with direct Z-schemes[J].Physical Chemistry Chemical Physics,2023,25(12):8861-8870.
[36] Chen Y,Shi T,Liu P,et al.Insights into the mechanism of the enhanced visible-light photocatalytic activity of black phosphorus/BiVO4 heterostructure:A first-principles study[J].Journal of Materials Chemistry A,2018,6:19167-19175.
[37] Zhu M,Sun Z,Fujitsuka M,et al.Z-Scheme photocatalytic overall pure-water splitting on 2D heterostructure of black phosphorus/BiVO4 under visible light[J].Angewandte Chemie International Edition,2018,57:2160-2164.
[38] Hong X,Kim J,Shi S F,et al.Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J].Nature Nanotechnology,2014,9:682-686.
[39] Zheng Q,Saidi W A,Xie Y,et al.Phonon-assisted ultrafast charge transfer at van der Waals heterostructure interface[J].Nano Letters,2017,17:6435-6442.
[40] Long R,Prezhdo O V.Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals junction[J].Nano Letters,2016,16:1996-2003.
[41] Ceballos F,Bellus M Z,Chiu H Y,et al.Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure[J].ACS Nano,2014,8:12717-12724.
[42] Dou W,Jia Y,Hao X,et al.Time-domain ab initio insights into the reduced nonradiative electron-hole recombination in ReSe2/MoS2 van der Waals heterostructure[J].The Journal of Physical Chemistry Letters,2021,12:2682-2690.
[43] He J,Zhang L,He D,et al.Ultrafast transient absorption measurements of photocarrier dynamics in monolayer and bulk ReSe2[J].Optics Express,2018,26:21501-21509.
[44] Shi A,Sun D,Zhang X,et al.Direct Z-scheme photocatalytic system:Insights into the formative factors of photogenerated carriers transfer channel from ultrafast dynamics[J].ACS Catalysis,2022,12:9570-9578.
[45] Zheng Q,Chu W,Zhao C,et al.Ab initio nonadiabatic molecular dynamics investigations on the excited carriers in condensed matter systems[J].Wiley Interdisciplinary Reviews:Computational Molecular Science,2019,9(6):1411.
[46] Jaeger H M,Fischer S,Prezhdo O V.Decoherence-induced surface hopping[J].Journal of Chemical Physics,2012,137:22A545.
[47] Wan X Q,Yang C L,Li X H,et al.Insights into photogenerated carrier dynamics and overall water splitting of the CrS3/GeSe heterostructure[J].The Journal of Physical Chemistry Letters,2023,14(40):9126-9135.
[48] Li X T,Yang C L,Zhao W K,et al.Photocatalytic Z-scheme overall water splitting for hydrogen generation with Sc2CCl2/ML(ML= MoTe2,Hf2CO2) heterostructures[J].International Journal of Hydrogen Energy,2024,59:214-223.
[49] Zhang C F,Yang C L,Wang M S,et al.Z-Scheme photocatalytic solar-energy-to-hydrogen conversion driven by the HfS2/SiSe heterostructure[J].Journal of Materials Chemistry C,2022,10(14):5474-5481.
[50] Yin Q K,Yang C L,Wang M S,et al.Two-dimensional heterostructures of AuSe/SnS for the photocatalytic hydrogen evolution reaction with a Z-scheme[J].Journal of Materials Chemistry C,2021,9(36):12231-12238.
[51] Li X,Zhao J,Yang J.Semihydrogenated BN sheet:A promising visible-light driven photocatalyst for water splitting[J].Scientific Reports,2013,3(1):1858.
[52] Kiran V,Mukherjee D,Jenjeti R N.Active guests in the MoS2/MoSe2 host lattice:efficient hydrogen evolution using few-layer alloys of MoS2(1-x)Se2x[J].Nanoscale,2014,6(21):12856-12863.
[53] Feng C,Wu Z P,Huang K W,et al.Surface modification of 2D photocatalysts for solar energy conversion[J].Advanced Materials,2022,34(23):2200180.
[54] Wang F,Shi T A,Zhan X,et al.Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting[J].Nanoscale,2015,7(47):19764-19788.
[55] Wan X Q,Yang C L,Wang M S,et al.Boost solar-to-hydrogen efficiency by constructing heterostructures with the pristine and Se/Te-doped AgInP2S6 monolayers[J].Applied Surface Science,2023,614:156254.
[56] Wang F,Yang C L,Li X H,et al.Hydrogen generation from direct Z-scheme for photocatalytic overall water splitting with the SiSe/SnSe2 and SiSe/SnSSe heterostructures[J].Journal of Catalysis,2024,432:115429.
[57] Ge M,Yang C L,Wang M S,et al.Two-dimensional PtI2/Bi2S3 and PtI2/Bi2Se3 heterostructures with high solar-to-hydrogen efficiency[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,666:131286.
[58] Ge M,Yang C L,Wang M S,et al.Photocatalytic hydrogen generation from overall water splitting with direct Z-scheme driven by two-dimensional InTe/Bismuthene heterostructure[J].International Journal of Hydrogen Energy,2023,48(1):138-146.
[59] Yin Q K,Yang C L,Wang M S,et al.Two-dimensional AuSe/SnSe heterostructure for solar photocatalytic hydrogen evolution reaction with Z-scheme[J].Solar Energy Materials and Solar Cells,2022,247:111940.
[60] Yu H,Wang D,Zhao B,et,al.Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction[J].Separation and Purification Technology,2021,237:16365.
[61] Wang M,Tan G,Ren H,et,al.Direct double Z-scheme g-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity[J].Applied Surface Science,2019,492:690-702.
[62] Sun S,Cheng H,Cao K,et,al.Ultrafast charge separation in ternary V2O5/CdS/CoS2 Z-scheme heterojunction enables efficient visible-light-driven hydrogen generation[J].Energy Fuels,2022,36:2034-2043.
[63] Zhang R,Zeng K.A novel flower-like dual Z-scheme BiSi/Bi2WO6 /g-C3N4 photocatalyst has excellent photocatalytic activity for the degradation of organic pollutants under visible light[J].Diamond and Related Materials,2021,115:108343.
[64] Xue W,Huang D,Li J,et,al.Assembly of AgI nanoparticles and ultrathin g-C3N4 nanosheets codecorated Bi2WO6 direct dual Z-scheme photocatalyst:an efficient,sustainable and heterogeneous catalyst with enhanced photocatalytic performance[J].Chemical Engineering Journal,2019,373:1144-1157.
[65] Wan X Q,Yang C L,Li X H,et al.Two-dimensional trilayer heterostructures with cascade dual Z-schemes to achieve efficient hydrogen evolution reaction[J].Journal of Materials Chemistry A,2024,12(4):2359-2372.
[66] Shi A,Sun D,Zhang X,et al.Sandwich-polarized heterojunction:Efficient charge separation and redox capability protection for photocatalytic overall water splitting[J].ACS Applied Materials & Interfaces,2022,14(28):32018-32025.
[67] Yin Y T,Yang C L,Wang M S,et al.Edge-passivated graphene nanoribbons as metal free photocatalyst for efficiently photocatalytic overall water splitting with sunlight[J].International Journal of Hydrogen Energy,2024,51:1556-1565.
[68] Liu M,Yang C L,Li Y,et al.Hydrogen production of overall water splitting with direct Z-scheme driven by antimonene and arsenide nanoribbon heterostructures:Insight from electronic properties and carrier nonadiabatic dynamics[J].Journal of Power Sources,2024,594:234045.
[69] Gao Y,Fu C,Hu W,et al.Designing direct Z-scheme heterojunctions enabled by edge-modified phosphorene nanoribbons for photocatalytic overall water splitting[J].The Journal of Physical Chemistry Letters,2021,13(1):1-11.
[70] Zhang R,Li Y,Zhou X,et al.Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution[J].Nature Communications,2023,14(1):2460.
[71] Qin S,Jin P.Electrocatalytic hydrogen evolution on the MoS2/C60 heterostructure:Reaction mechanism and activity improvement[J].Applied Surface Science,2023,624:157163.
[72] Long R,Prezhdo O V.Time-domain ab initio analysis of excitation dynamics in a quantum dot/polymer hybrid:atomistic description rationalizes experiment[J].Nano Letters,2015,15(7):4274-4281.
[ 2 ] Lubitz W,Tumas W.Hydrogen:An overview[J].Chemical Reviews,2007,107(10):3900-3903.
[ 3 ] Briguglio,Andaloro,Ferraro M,et al.Renewable energy for hydrogen production and sustainable urban mobility[J].International Journal of Hydrogen Energy,2010,35(18):9996-10003.
[ 4 ] Wang F,Deng S,Zhao J,et al.Performance and economic assessments of integrating geothermal energy into coal-fired power plant with CO2 capture[J].Energy,2017,119:278-287.
[ 5 ] Khan N,Kalair A,Abas N,et al.Review of ocean tidal,wave and thermal energy technologies[J].Renewable and Sustainable Energy Reviews,2017,72:590-604.
[ 6 ] 国家能源局.氢能产业发展中长期规划(2021-2035年)[M].北京:中国国家能源局,2021.
[ 7 ] Xue J,Bao J.Interfacial charge transfer of heterojunction photocatalysts:Characterization and calculation[J].Surfaces and Interfaces,2021,25:101265.
[ 8 ] Pacchioni G.First principles calculations on oxide-based heterogeneous catalysts and photocatalysts:Problems and advances[J].Catalysis Letters,2015,145:80-94.
[ 9 ] Wang R,Mujahid M,Duan Y,et al.A review of perovskites solar cell stability[J].Advanced Functional Materials,2019,29(47):1808843.
[10] Lee T D,Ebong A U.A review of thin film solar cell technologies and challenges[J].Renewable and Sustainable Energy Reviews,2017,70:1286-1297.
[11] Fu C F,Sun J,Luo Q,et al.Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting[J].Nano Letters,2018,18(10):6312-6317.
[12] Fan Y,Ma X,Wang J,et al.Highly-efficient overall water splitting in 2D Janus group-III chalcogenide multilayers:the roles of intrinsic electric filed and vacancy defects[J].Science Bulletin,2020,65(1):27-34.
[13] ?z?elik V O,J G Azadani,Yang C,et al.Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching[J].Physics Review B,2016,94:035125.
[14] Luo M,Lu C,Liu Y,et al.Band alignment of type-I SnS2/Bi2Se3 and type-II SnS2/Bi2Te3 van der Waals heterostructures for highly enhanced photoelectric responses[J].Science China Materials,2022,65:1000-1011.
[15] Luo Y,Chen G,Chen S,et al.Carrier transport enhancement mechanism in highly efficient antimony selenide thin-film solar cell[J].Advanced Functional Materials.2023,33:2213941.
[16] Li X,Zhao J,Yang J.Semihydrogenated BN sheet:A promising visible-light driven photocatalyst for water splitting[J].Scientific Reports,2013,3(1):1858.
[17] Afzal A M,Iqbal M Z,Dastgeer G,et al.Ultrafast and highly stable photodetectors based on p-GeSe/n-ReSe2 heterostructures[J].ACS Appllied Materials Interfaces,2021,13:47882-47894.
[18] Qi T,Gong Y,Li A,et al.Interlayer transition in a vdW heterostructure toward ultrahigh detectivity shortwave infrared photodetectors[J].Advanced Functional Materials.2020,30:1905687.
[19] Lei C,Ma Y,Xu X,et,al.Broken-gap type-Ⅲ and alignment in WTe2/HfS2 van der Waals heterostructure[J].Journal of Physical Chemistry C,2019,123:23089-23095.
[20] Cong X,Zheng Y,Huang F,et al.Efficiently band-tailored type-III van der Waals heterostructure for tunnel diodes and optoelectronic devices[J].Nano Research,2022,15(9):8442-8450.
[21] Wang Z,Zhu W.Tunable band alignments in 2D ferroelectric α-In2Se3 based Van der Waals heterostructures[J].Advances Electronic Materials,2021,7:2001174.
[22] Bader R F W,Nguyen-Dang T T.Quantum theory of atoms in molecules-Dalton revisited[J].Advances in Quantum Chemistry,1981,14:63-124.
[23] Zhang W X,Yin Y,He C.Spontaneous enhanced visible-light-driven photocatalytic water splitting on novel type-II GaSe/CN and Ga2SSe/CN vdW heterostructures[J].The Journal of Physical Chemistry Letters,2021,12(21):5064-5075.
[24] Kudo A,Miseki Y.Heterogeneous photocatalyst materials for water splitting[J].Chemical Society Reviews,2009,38(1):253-278.
[25] Sun R,Yang C L,Wang M S,et al.High solar-to-hydrogen efficiency photocatalytic hydrogen evolution reaction with the HfSe2/InSe heterostructure[J].Journal of Power Sources,2022,547:232008.
[26] Fan Y,Song X,Ai H et al.Highly efficient photocatalytic CO2 reduction in two-dimensional ferroelectric CuInP2S6 bilayers[J].ACS Applied Materials & Interfaces,2021,13(29):34486-34494.
[27] Scharber,Markus C,et al.Design rules for donors in bulk-heterojunction solar cells-Towards 10% energy-conversion efficiency[J].Advanced Materials,2006,18.6:789-794.
[28] Gueymard C A,Myers D,Emery K.Proposed reference irradiance spectra for solar energy systems testing[J].Solar Energy,2002,73(6):443-467.
[29] Liu H Y,Yang C L,Wang M S,et al.The high power conversion efficiency of a two-dimensional GeSe/AsP van der Waals heterostructure for solar energy cells[J].Physical Chemistry Chemical Physics,2021,23(10):6042-6050.
[30] Sun R,Yang C L,Wang M S,et al.Two-dimensional Sc2CCl2/SiS2 van der Waals heterostructure with high solar power conversion efficiency[J].Applied Surface Science,2022,591:153232.
[31] Wan X Q,Yang C L,Li X H,et al.Heterostructures stacked with X2SY (X= In,Ga;Y= Se,Te) and g-C2N monolayers for high power conversion efficiency solar cells:insight from electronic properties and nonadiabatic dynamics[J].Journal of Materials Chemistry A,2024,2024,d4ta01263a.
[32] Wang F,Yang C L,Wang M S,et al.Photocatalytic hydrogen evolution reaction with high solar-to-hydrogen efficiency driven by the Sb2S3 monolayer and RuI2/Sb2S3 heterostructure with solar light[J].Journal of Power Sources,2022,532:231352.
[33] Wang F,Yang C L,Wang M S,et al.PtTe2/Sb2S3 nanoscale heterostructures for the photocatalytic direct Z-scheme with high solar-to-hydrogen efficiency:a theoretical investigation[J].ACS Applied Nano Materials,2023,6(7):5591-5601.
[34] Sun R,Yang C L,Wang M S,et al.Sc2CCl2/WX2 (X=Se,Te) van der Waals heterostructures for photocatalytic hydrogen and oxygen evolutions with direct Z-schemes[J].International Journal of Hydrogen Energy,2023,48(98):38699-38707.
[35] Wan X Q,Yang C L,Wang M S,et al.Efficient photocatalytic hydrogen evolution and CO2 reduction by HfSe2/GaAs3 and ZrSe2/GaAs3 heterostructures with direct Z-schemes[J].Physical Chemistry Chemical Physics,2023,25(12):8861-8870.
[36] Chen Y,Shi T,Liu P,et al.Insights into the mechanism of the enhanced visible-light photocatalytic activity of black phosphorus/BiVO4 heterostructure:A first-principles study[J].Journal of Materials Chemistry A,2018,6:19167-19175.
[37] Zhu M,Sun Z,Fujitsuka M,et al.Z-Scheme photocatalytic overall pure-water splitting on 2D heterostructure of black phosphorus/BiVO4 under visible light[J].Angewandte Chemie International Edition,2018,57:2160-2164.
[38] Hong X,Kim J,Shi S F,et al.Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J].Nature Nanotechnology,2014,9:682-686.
[39] Zheng Q,Saidi W A,Xie Y,et al.Phonon-assisted ultrafast charge transfer at van der Waals heterostructure interface[J].Nano Letters,2017,17:6435-6442.
[40] Long R,Prezhdo O V.Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals junction[J].Nano Letters,2016,16:1996-2003.
[41] Ceballos F,Bellus M Z,Chiu H Y,et al.Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure[J].ACS Nano,2014,8:12717-12724.
[42] Dou W,Jia Y,Hao X,et al.Time-domain ab initio insights into the reduced nonradiative electron-hole recombination in ReSe2/MoS2 van der Waals heterostructure[J].The Journal of Physical Chemistry Letters,2021,12:2682-2690.
[43] He J,Zhang L,He D,et al.Ultrafast transient absorption measurements of photocarrier dynamics in monolayer and bulk ReSe2[J].Optics Express,2018,26:21501-21509.
[44] Shi A,Sun D,Zhang X,et al.Direct Z-scheme photocatalytic system:Insights into the formative factors of photogenerated carriers transfer channel from ultrafast dynamics[J].ACS Catalysis,2022,12:9570-9578.
[45] Zheng Q,Chu W,Zhao C,et al.Ab initio nonadiabatic molecular dynamics investigations on the excited carriers in condensed matter systems[J].Wiley Interdisciplinary Reviews:Computational Molecular Science,2019,9(6):1411.
[46] Jaeger H M,Fischer S,Prezhdo O V.Decoherence-induced surface hopping[J].Journal of Chemical Physics,2012,137:22A545.
[47] Wan X Q,Yang C L,Li X H,et al.Insights into photogenerated carrier dynamics and overall water splitting of the CrS3/GeSe heterostructure[J].The Journal of Physical Chemistry Letters,2023,14(40):9126-9135.
[48] Li X T,Yang C L,Zhao W K,et al.Photocatalytic Z-scheme overall water splitting for hydrogen generation with Sc2CCl2/ML(ML= MoTe2,Hf2CO2) heterostructures[J].International Journal of Hydrogen Energy,2024,59:214-223.
[49] Zhang C F,Yang C L,Wang M S,et al.Z-Scheme photocatalytic solar-energy-to-hydrogen conversion driven by the HfS2/SiSe heterostructure[J].Journal of Materials Chemistry C,2022,10(14):5474-5481.
[50] Yin Q K,Yang C L,Wang M S,et al.Two-dimensional heterostructures of AuSe/SnS for the photocatalytic hydrogen evolution reaction with a Z-scheme[J].Journal of Materials Chemistry C,2021,9(36):12231-12238.
[51] Li X,Zhao J,Yang J.Semihydrogenated BN sheet:A promising visible-light driven photocatalyst for water splitting[J].Scientific Reports,2013,3(1):1858.
[52] Kiran V,Mukherjee D,Jenjeti R N.Active guests in the MoS2/MoSe2 host lattice:efficient hydrogen evolution using few-layer alloys of MoS2(1-x)Se2x[J].Nanoscale,2014,6(21):12856-12863.
[53] Feng C,Wu Z P,Huang K W,et al.Surface modification of 2D photocatalysts for solar energy conversion[J].Advanced Materials,2022,34(23):2200180.
[54] Wang F,Shi T A,Zhan X,et al.Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting[J].Nanoscale,2015,7(47):19764-19788.
[55] Wan X Q,Yang C L,Wang M S,et al.Boost solar-to-hydrogen efficiency by constructing heterostructures with the pristine and Se/Te-doped AgInP2S6 monolayers[J].Applied Surface Science,2023,614:156254.
[56] Wang F,Yang C L,Li X H,et al.Hydrogen generation from direct Z-scheme for photocatalytic overall water splitting with the SiSe/SnSe2 and SiSe/SnSSe heterostructures[J].Journal of Catalysis,2024,432:115429.
[57] Ge M,Yang C L,Wang M S,et al.Two-dimensional PtI2/Bi2S3 and PtI2/Bi2Se3 heterostructures with high solar-to-hydrogen efficiency[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,666:131286.
[58] Ge M,Yang C L,Wang M S,et al.Photocatalytic hydrogen generation from overall water splitting with direct Z-scheme driven by two-dimensional InTe/Bismuthene heterostructure[J].International Journal of Hydrogen Energy,2023,48(1):138-146.
[59] Yin Q K,Yang C L,Wang M S,et al.Two-dimensional AuSe/SnSe heterostructure for solar photocatalytic hydrogen evolution reaction with Z-scheme[J].Solar Energy Materials and Solar Cells,2022,247:111940.
[60] Yu H,Wang D,Zhao B,et,al.Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction[J].Separation and Purification Technology,2021,237:16365.
[61] Wang M,Tan G,Ren H,et,al.Direct double Z-scheme g-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity[J].Applied Surface Science,2019,492:690-702.
[62] Sun S,Cheng H,Cao K,et,al.Ultrafast charge separation in ternary V2O5/CdS/CoS2 Z-scheme heterojunction enables efficient visible-light-driven hydrogen generation[J].Energy Fuels,2022,36:2034-2043.
[63] Zhang R,Zeng K.A novel flower-like dual Z-scheme BiSi/Bi2WO6 /g-C3N4 photocatalyst has excellent photocatalytic activity for the degradation of organic pollutants under visible light[J].Diamond and Related Materials,2021,115:108343.
[64] Xue W,Huang D,Li J,et,al.Assembly of AgI nanoparticles and ultrathin g-C3N4 nanosheets codecorated Bi2WO6 direct dual Z-scheme photocatalyst:an efficient,sustainable and heterogeneous catalyst with enhanced photocatalytic performance[J].Chemical Engineering Journal,2019,373:1144-1157.
[65] Wan X Q,Yang C L,Li X H,et al.Two-dimensional trilayer heterostructures with cascade dual Z-schemes to achieve efficient hydrogen evolution reaction[J].Journal of Materials Chemistry A,2024,12(4):2359-2372.
[66] Shi A,Sun D,Zhang X,et al.Sandwich-polarized heterojunction:Efficient charge separation and redox capability protection for photocatalytic overall water splitting[J].ACS Applied Materials & Interfaces,2022,14(28):32018-32025.
[67] Yin Y T,Yang C L,Wang M S,et al.Edge-passivated graphene nanoribbons as metal free photocatalyst for efficiently photocatalytic overall water splitting with sunlight[J].International Journal of Hydrogen Energy,2024,51:1556-1565.
[68] Liu M,Yang C L,Li Y,et al.Hydrogen production of overall water splitting with direct Z-scheme driven by antimonene and arsenide nanoribbon heterostructures:Insight from electronic properties and carrier nonadiabatic dynamics[J].Journal of Power Sources,2024,594:234045.
[69] Gao Y,Fu C,Hu W,et al.Designing direct Z-scheme heterojunctions enabled by edge-modified phosphorene nanoribbons for photocatalytic overall water splitting[J].The Journal of Physical Chemistry Letters,2021,13(1):1-11.
[70] Zhang R,Li Y,Zhou X,et al.Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution[J].Nature Communications,2023,14(1):2460.
[71] Qin S,Jin P.Electrocatalytic hydrogen evolution on the MoS2/C60 heterostructure:Reaction mechanism and activity improvement[J].Applied Surface Science,2023,624:157163.
[72] Long R,Prezhdo O V.Time-domain ab initio analysis of excitation dynamics in a quantum dot/polymer hybrid:atomistic description rationalizes experiment[J].Nano Letters,2015,15(7):4274-4281.
基本信息:
DOI:
中图分类号:O469;TM914.4
引用信息:
[1]万雪晴,杨传路.第一性原理研究太阳能电池和光催化水解析氢二维异质结性能[J].山东师范大学学报(自然科学版),2024,39(03):193-209.
基金信息:
国家自然科学基金资助项目(12374232)
暂无数据