25 | 0 | 2 |
下载次数 | 被引频次 | 阅读次数 |
在全球气候变暖的背景下,高温已成为限制植物生长、发育以及农作物产量的重要的胁迫因子。高温胁迫对植物的种子萌发、光合作用速率、水分利用率、花粉活力、作物产量和品质等形态和生理生化特性产生显著的负面影响。为了应对高温胁迫,植物通过一系列复杂的分子机制来感知高温,并启动一系列防御反应以保持细胞的稳态并提高其耐热性。本文系统阐述了植物耐热性的多维调控网络,涵盖了高温感知、信号传导以及基因表达调控等领域的最新研究进展,特别关注了在高温感知过程中几个关键的信号途径、蛋白质相分离介导的保护机制以及耐热相关数量性状的遗传基础。通过对这些分子调控网络的深入解析,不仅拓展了人们对植物温度响应机制的认识,更为分子设计培育新型耐热作物品种提供了理论依据和技术路径。
Abstract:In the context of global climate warming, high temperatures have become a major stress factor limiting plant growth, development, and crop yield. Heat stress has a pronounced negative impact on the morphological, physiological, and biochemical characteristics of crops, including seed germination, photosynthetic rate, water use efficiency, pollen viability, yield, and product quality. To cope with heat stress, plants employ a series of complex molecular mechanisms to sense heat and initiate a range of defense responses to maintain cellular homeostasis and enhance heat tolerance. This review systematically elucidates the multidimensional regulatory network of plant heat tolerance, covering the latest research advancements in heat sensing, signal transduction, and gene expression regulation. It particularly focuses on several key signaling pathways in heat sensing, protein phase separation-mediated protective mechanisms, and the genetic basis of heat tolerance-related quantitative traits. Through a deep analysis of these molecular regulatory networks, this work not only expands our understanding of plant temperature response mechanisms but also provides theoretical foundations and technical approaches for molecular design to cultivate new heat-resistant crop varieties.
[ 1 ] Kan Y,Mu X R,Zhang H,et al.TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis[J].Nature Plants,2022,8(1):53-67.
[ 2 ] Zeng C,Jia T,Gu T,et al.Progress in research on the mechanisms underlying chloroplast-involved heat tolerance in plants[J].Genes,2021,12(9):1343.
[ 3 ] Zhao Y,Liu S,Yang K,et al.Fine control of growth and thermotolerance in the plant response to heat stress[J].Journal of Integrative Agriculture,2025,24(2):409-428.
[ 4 ] Kerbler S M,Wigge P A.Temperature sensing in plants[J].Annual Review of Plant Biology,2023,74:341-366.
[ 5 ] Huang L Z,Zhou M,Ding Y F,et al.Gene networks involved in plant heat stress response and tolerance[J].International Journal of Molecular Sciences,2022,23(19):11970.
[ 6 ] Kan Y,Lin H X.Molecular regulation and genetic control of rice thermal response[J].The Crop Journal,2021,9(3):497-505.
[ 7 ] 张明慧,曹俊峰,解莉楠.拟南芥钙调素结合转录因子CAMTA在植物抗逆中的研究进展[J].分子植物育种,2021,19(1):158-163.
[ 8 ] Luo L,Cui Y,Ouyang N,et al.Tolerance to multiple abiotic stresses is mediated by interacting CNGC proteins that regulate Ca2+ influx and stomatal movement in rice[J].Journal of Integrative Plant Biology,2025,67(2):226-242.
[ 9 ] Gao F,Han X,Wu J,et al.A heat-activated calcium-permeable channel-Arabidopsis cyclic nucleotide-gated ion channel 6-is involved in heat shock responses[J].The Plant Journal:For Cell and Molecular Biology,2012,70(6):1056-1069.
[10] Wang Y,Kang Y,Ma C,et al.CNGC2 is a Ca2+ influx channel that prevents accumulation of apoplastic Ca2+ in the leaf[J].Plant Physiology,2016,173(2):1342.
[11] 李瑞梅,王雨晴,张帆,等.植物膜联蛋白(Annexin)的研究进展[J].基因组学与应用生物学,2017,36(5):2128-2136.
[12] Qiao B,Zhang Q,Liu D,et al.A calcium-binding protein,rice annexin OsANN1,enhances heat stress tolerance by modulating the production of H2O2[J].Journal of Experimental Botany,2015,66(19):5853-5866.
[13] Zhao Y,Du H,Wang Y,et al.The calcium-dependent protein kinase ZmCDPK7 functions in heat-stress tolerance in maize[J].Journal of Integrative Plant Biology,2021,63(3):510-527.
[14] He N Y,Chen L S,Sun A Z,et al.A nitric oxide burst at the shoot apex triggers a heat-responsive pathway in Arabidopsis[J].Nature Plants,2022,8(4):434-450.
[15] Peng X,Zhang X,Li B,et al.Cyclic nucleotide-gated ion channel 6 mediates thermotolerance in Arabidopsis seedlings by regulating nitric oxide production via cytosolic calcium ions[J].BMC Plant Biology,2019,19:368.
[16] Xuan Y,Zhou S,Wang L,et al.Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in arabidopsis seedlings[J].Plant Physiology,2010,153(4):1895-1906.
[17] Liu X H,Ly Y S,Yang W,et al.A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice[J].Plant Biotechnology Journal,2020,18(5):1317-1329.
[18] Chang Y,Fang Y,Liu J,et al.Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice[J].Nature Communications,2024,15(1):5877.
[19] Kim S C,Guo L,Wang X.Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress[J].Nature Communications,2020,11(1):3439.
[20] Bai J,Shi Z,Zheng S.The role of histone modifications in heat signal transduction in plants[J].Advanced Biology,2023,7(10):e2200323.
[21] 王涛,冯敬磊,张翠.高温胁迫影响玉米生长发育的分子机制研究进展[J].植物学报,2024,59(6):963-977.
[22] 江珊,吴龙英,赵宝生,等.植物耐受高温胁迫的分子机制研究进展[J].中国农学通报,2024,40(9):132-138.
[23] Averill-Bates D.Reactive oxygen species and cell signaling,Review[J].Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2024,1871(2):119573.
[24] Singh S,Praveen A,Dudha N,et al.Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production[J].Physiology and Molecular Biology of Plants:An International Journal of Functional Plant Biology,2024,30(7):1185-1208.
[25] Zhu X,Duan H,Zhang G,et al.StMAPK1 functions as a thermos-tolerant gene in regulating heat stress tolerance in potato (Solanum tuberosum)[J].Frontiers in Plant Science,2023,14:1218962.
[26] Fang Y,Liao K,Du H,et al.A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J].Journal of Experimental Botany,2015,66(21):6803-6817.
[27] Ji M,Liu M,Zheng X,et al.Pinellia ternata HD-Zip6 gene positively regulates heat stress tolerance in transgenic Arabidopsis by increasing ROS scavenging and NAC019 expression[J].Plant Stress,2025,16:100806.
[28] Liu R,Yu B,Shu B,et al.SmEGY3 mediates H2O2 production to enhance high-temperature stress tolerance by activating the expression of SmCSD1 in eggplant[J].Horticultural Plant Journal,2024,10(5):1247-1251.
[29] Liu X,Ji P,Liao J,et al.CRISPR/Cas knockout of the NADPH oxidase gene OsRbohB reduces ROS overaccumulation and enhances heat stress tolerance in rice[J].Plant Biotechnology Journal,2025,23(2):336-351.
[30] Xia S,Liu H,Cui Y,et al.UDP-N-acetylglucosamine pyrophosphorylase enhances rice survival at high temperature[J].The New Phytologist,2022,233(1):344-359.
[31] Li R,Pang L.Comparing the effects of proteins with IDRs on membrane system in yeast,mammalian cells,and the model plant Arabidopsis[J].Current Opinion in Plant Biology,2023,74:102375.
[32] Londoňo Vélez V,Alquraish F,Tarbiyyah I,et al.Landscape of biomolecular condensates in heat stress responses[J].Frontiers in Plant Science,2022,13:1032045.
[33] Chen D,Ly M,Kou X,et al.Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B[J].Molecular Cell,2022,82(16):3015-3029.e6.
[34] Bohn L,Huang J,Weidig S,et al.The temperature sensor TWA1 is required for thermotolerance in Arabidopsis[J].Nature,2024,629(8014):1126-1132.
[35] Jung J H,Barbosa A D,Hutin S,et al.A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis[J].Nature,2020,585(7824):256-260.
[36] Jang G J,Jang J C,Wu S H.Dynamics and functions of stress granules and processing bodies in plants[J].Plants,2020,9(9):1122.
[37] Ma J,Li S,Wang T,et al.Cooperative condensation of RNA-DIRECTED DNA METHYLATION 16 splicing isoforms enhances heat tolerance in Arabidopsis[J].Nature Communications,2025,16(1):433.
[38] Huang Z,Lin R,Dong Y,et al.MiR164a-targeted NAM3 inhibits thermotolerance in tomato by regulating HSFA4b-mediated redox homeostasis[J].Plant Physiology,2025,197(4):kiaf113.
[39] Decker C J,Parker R.P-bodies and stress granules:possible roles in the control of translation and mRNA degradation[J].Cold Spring Harbor Perspectives in Biology,2012,4(9):a012286.
[40] Tong J,Ren Z,Sun L,et al.ALBA proteins confer thermotolerance through stabilizing HSF messenger RNAs in cytoplasmic granules[J].Nature Plants,2022,8(7):778-791.
[41] Wang Q,Gong Z,Zhu Z.High temperature-responsive DEAR4 condensation confers thermotolerance through recruiting TOPLESS in Arabidopsis nucleus[J].The Plant Journal:For Cell and Molecular Biology,2025,122(2):e70172.
[42] Chen Z,Xu Q,Wang J,et al.A histone deacetylase confers plant tolerance to heat stress by controlling protein lysine deacetylation and stress granule formation in rice[J].Cell Reports,2024,43(9):114642.
[43] Zhu S,Gu J,Yao J,et al.Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in arabidopsis[J].Developmental Cell,2022,57(5):583-597.e6.
[44] Xu F,Wang L,Li Y,et al.Phase separation of GRP7 facilitated by FERONIA-mediated phosphorylation inhibits mRNA translation to modulate plant temperature resilience[J].Molecular Plant,2024,17(3):460-477.
[45] Wu J,Wang Y,Chen H,et al.Solid-like condensation of MORF8 inhibits RNA editing under heat stress in Arabidopsis[J].Nature Communications,2025,16(1):2789.
[46] 郭秀林,戚润思,孟祥照,等.植物热激转录因子研究进展与展望[J].华北农学报,2025,40(1):1-13.
[47] Nishad A,Nandi A K.Recent advances in plant thermomemory[J].Plant Cell Reports,2021,40(1):19-27.
[48] Mishra S K,Chaudhary C,Baliyan S,et al.Heat-stress-responsive HvHSFA2e gene regulates the heat and drought tolerance in barley through modulation of phytohormone and secondary metabolic pathways[J].Plant Cell Reports,2024,43(7):172.
[49] Tan W,Chen J,Yue X,et al.The heat response regulators HSFA1s promote Arabidopsis thermomorphogenesis via stabilizing PIF4 during the day[J].Science Advances,2023,9(44):eadh1738.
[50] Chai G,Liu H,Zhang Y,et al.Integration of C3H15-mediated transcriptional and post-transcriptional regulation confers plant thermotolerance in Arabidopsis[J].The Plant Journal:For Cell and Molecular Biology,2024,119(3):1558-1569.
[51] Friedrich T,Oberkofler V,Trindade I,et al.Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis[J].Nature Communications,2021,12(1):3426.
[52] Pandey V,Singh S.Plant adaptation and tolerance to heat stress:advance approaches and future aspects[J].Combinatorial Chemistry & High Throughput Screening,2024,27(12):1701-1715.
[53] Li Z,Li Z,Ji Y,et al.The heat shock factor 20-HSF4-cellulose synthase A2 module regulates heat stress tolerance in maize[J].The Plant Cell,2024,36(7):2652-2667.
[54] 李皎琪,李美琪,王玉婷.果蔬逆境胁迫应答中AP2/ERF转录因子的激素调控研究进展[J].食品科学,2024,45(12):315-323.
[55] Li T,Wu Z,Zhang Y,et al.An AP2/ERF member LlERF012 confers thermotolerance via activation of HSF pathway in lily[J].Plant,Cell & Environment,2024,47(12):4702-4719.
[56] Lu H P,Liu X H,Wang M J,et al.The NAT1-bHLH110-CER1/CER1L module regulates heat stress tolerance in rice[J].Nature Genetics,2025,57(2):427-440.
[57] Wu Z,Gong X,Zhang Y,et al.LlbHLH87 interacts with LlSPT to modulate thermotolerance via activation of LlHSFA2 and LlEIN3 in lily[J].The Plant Journal:For Cell and Molecular Biology,2024,120(4):1457-1473.
[58] Lee S,Lee H J,Jung J H,et al.The Arabidopsis thaliana RNA-binding protein FCA regulates thermotolerance by modulating the detoxification of reactive oxygen species[J].The New Phytologist,2015,205(2):555-569.
[59] Chen S,Cao H,Huang B,et al.The WRKY10-VQ8 module safely and effectively regulates rice thermotolerance[J].Plant,Cell & Environment,2022,45(7):2126-2144.
[60] Qin W,Wang N,Yin Q,et al.Activation tagging identifies WRKY14 as a repressor of plant thermomorphogenesis in Arabidopsis[J].Molecular Plant,2022,15(11):1725-1743.
[61] Zhu X,Duan H,Jin H,et al.Heat responsive gene StGATA2 functions in plant growth,photosynthesis and antioxidant defense under heat stress conditions[J].Frontiers in Plant Science,2023,14:1227526.
[62] 刘朝睿.玉米株型性状配合力和杂种优势的关联分析[D].成都:四川农业大学,2018.
[63] Yu H X,Cao Y J,Yang Y B,et al.A TT1-SCE1 module integrates ubiquitination and SUMOylation to regulate heat tolerance in rice[J].Molecular Plant,2024,17(12):1899-1918.
[64] Li X M,Chao D Y,Wu Y,et al.Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J].Nature Genetics,2015,47(7):827-833.
[65] H Z,Jf Z,Y K,et al.A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance[J].Science (New York,N.Y.),2022,376(6599).
[66] Wang Z,Dong S,Liu Y,et al.A Genome-wide association study identifies candidate genes for heat tolerance in adult cucumber plants[J].Horticultural Plant Journal,2025,11(2):774-787.
[67] Wei Z,Yuan Q,Lin H,et al.Linkage analysis,GWAS,transcriptome analysis to identify candidate genes for rice seedlings in response to high temperature stress[J].BMC Plant Biology,2021,21(1):85.
[68] Li P,Jiang J,Zhang G,et al.Integrating GWAS and transcriptomics to identify candidate genes conferring heat tolerance in rice[J].Frontiers in Plant Science,2023,13:1102938.
[69] Xin X,Li P,Zhao X,et al.Temperature-dependent jumonji demethylase modulates flowering time by targeting H3K36me2/3 in Brassica rapa[J].Nature Communications,2024,15(1):5470.
基本信息:
DOI:
中图分类号:Q945.78
引用信息:
[1]刘宝怡,马长乐.高温胁迫下植物耐热性的多维调控网络[J].山东师范大学学报(自然科学版),2025,40(02):133-142.
基金信息:
山东省重点研发计划资助项目(2023LZGC011)