nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 04, v.39 289-304
激发态质子转移的机制探究及其性质调控
基金项目(Foundation): 国家自然科学基金资助项目(12404300)
邮箱(Email):
DOI:
摘要:

激发态质子转移(Excited State Proton Trafmfer, ESPT)是一种重要的光诱导质子转移过程,在有机发光材料、环境监测以及生物体系中的光信号传导等领域起着至关重要作用。本文综述了ESPT的基本原理及其在不同条件下的行为。本文首先介绍ESPT的概念及种类,包括单质子转移、双质子转移以及多质子转移等。然后详细地讨论影响和调控ESPT反应的多个因素,包括溶剂效应、电场影响、取代基团效应、π扩展效应和基团位置,以及这些因素如何作用于激发态质子转移的动力学和热力学过程。通过对这些影响因素的综合分析,为理解和调控ESPT提供了深入的见解,这对于开发新型光功能材料等方面具有指导意义。

Abstract:

Excited-state proton transfer(ESPT) is an important photo-induced proton transfer process. It plays an important role in the fields such as organic luminescent materials, environmental monitoring, and optical signal transmission in biological systems. The review summarizes the basic principle of ESPT and its behavior under different conditions. This paper first introduces the concept and types of ESPT, including singel-proton transfer of molecules, which is usually accompanied by significant changes in fluorescence characteristics, including single, double proton transfer, and multi-proton transfer. Then, several factors affecting the ESPT reaction are discussed in detail, such as solvent effect, electric field effect, substituent group effect, π expansion effect, and the influence of group position on the ESPT process, as well as how these factors affect the kinetic and thermodynamic of excited-state proton transfer. Through a comprehensive analysis of these influencing factors, this review provides indepth insights into to understanding and regulating ESPT, offering guidance significance for developing novel optical functional materials.

参考文献

[ 1 ] Tabbakh F.Significance of the proton energy loss mechanism to gold nanoparticles in proton therapy:A Geant4 simulation[J].Scientific Reports,2024,14(1):24978.

[ 2 ] Huynh N H,Chow J C L.DNA dosimetry with gold nanoparticle irradiated by proton beams:A Monte Carlo study on dose enhancement[J].Applied Sciences,2021,11(22):10856.

[ 3 ] Wu S,Guo H,Zhao C.Challenges and opportunities for proton batteries:From electrodes,electrolytes to full-cell applications[J].Advanced Functional Materials,2024,34(40):2405401.

[ 4 ] Rajabpour S,Saberi H,Rasouli J,et al.Comparing Geant4 physics models for proton-induced dose deposition and radiolysis enhancement from a gold nanoparticle[J].Scientific Reports,2022,12(1):1779.

[ 5 ] Xia H,Zhou W,Qu X,et al.Electricity generated by upstream proton diffusion in two-dimensional nanochannels[J].Nature Nanotechnology,2024,19(9):1316-1322.

[ 6 ] Wu Q,Yang N,Xiao M,et al.Bicarbonate-mediated proton transfer requires cations[J].Nature Communications,2024,15(1):9145.

[ 7 ] Tong J,Fu Y,Domaretskiy D,et al.Control of proton transport and hydrogenation in double-gated graphene[J].Nature,2024,630:619-624.

[ 8 ] Wang W,Marshall M,Collins E,et al.Intramolecular electron-induced proton transfer and its correlation with excited-state intramolecular proton transfer[J].Nature Communications,2019,10(1):1170.

[ 9 ] Brünig F N,Rammler M,Adams E M,et al.Spectral signatures of excess-proton waiting and transfer-path dynamics in aqueous hydrochloric acid solutions[J].Nature Communications,2022,13(1):4210.

[10] Wolke C T,Fournier J A,Dzugan L C,et al.Spectroscopic snapshots of the proton-transfer mechanism in water[J].Science,2016,354:1131-1135.

[11] Marx D.Proton Transfer 200 Years after von Grotthuss:Insights from ab initio simulations[J].ChemPhysChem,2006,7(9):1848-1870.

[12] Weller A.Innermolekularer Protonenübergang im angeregten Zustand[J].Zeitschrift für Elektrochemie,Berichte der Bunsengesellschaft für Physikalische Chemie,1956,60(9-10):1144-1147.

[13] Chen C L,Chen Y T,Demchenko A P,et al.Amino proton donors in excited-state intramolecular proton-transfer reactions[J].Nature Reviews Chemistry,2018,2(7):131-143.

[14] Joshi H C,Antonov L.Excited-state intramolecular proton transfer:A short introductory review[J].Molecules,2021,26(5):1475.

[15] Perveaux A,Lorphelin M,Lasorne B,et al.Fast and slow excited-state intramolecular proton transfer in 3-hydroxychromone:A two-state story?[J].Physical Chemistry Chemical Physics,2017,19(9):6579-6593.

[16] Wang Q,Li X,Song L,et al.Theoretical study on ESIPT mechanism and negative solvatochromism effect of 3-(4,5-Diphenyl-1H-imidazol-2-yl)-9-phenyl-9H-carbazol-4-ol compound in different solvents[J].Journal of Molecular Liquids,2023,382:122000.

[17] Hao J,Yang Y.Unveiling the effect of solvent polarity on the excited state intramolecular proton transfer mechanism of new 3-hydroxy-4-pyridylisoquinoline compound[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,232:118082.

[18] Shang C,Cao Y,Shao Z,et al.Tactfully unveiling the effect of solvent polarity on the ESIPT mechanism and photophysical property of the 3-hydroxylflavone derivative[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,267:120496.

[19] Li H,Shi Y,Yin H,et al.New insights into the solvent-assisted excited-state double proton transfer of 2-(1H-pyrazol-5-yl)pyridine with alcoholic partners:A TDDFT investigation[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,141:211-215.

[20] Muriel W A,Morales-Cueto R,Rodríguez-Córdoba W.Unravelling the solvent polarity effect on the excited state intramolecular proton transfer mechanism of the 1-and 2-salicylideneanthrylamine.A TD-DFT case study[J].Physical Chemistry Chemical Physics,2019,21(2):915-928.

[21] Panneerselvam M,Francis R R,Nathiya S,et al.Exploring electron donor and acceptor effects:DFT analysis of ESIPT/GSIPT in 2-(oxazolinyl)-phenols for photophysical and luminophore enhancement[J].The Journal of Chemical Physics,2024,160(17):174302.

[22] Chen K Y,Tsai H Y,Lin W C,et al.ESIPT fluorescent dyes with adjustable optical properties:Substituent and conjugation effects[J].Journal of Luminescence,2014,154:168-177.

[23] Ding S,Xu A,Sun A,et al.Substituent effect on ESIPT and hydrogen bond mechanism of N-(8-Quinolyl) salicylaldimine:A detailed theoretical exploration[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2021,245:118937.

[24] Li X,Wang Q,Song L,et al.Effects of substitution and conjugation on ESIPT behavior of Schiff base derivatives[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,279:121377.

[25] Zhao J,Dong H,Song P.Effects of push-pull electronic substitutions on ESIPT reaction for BH-BA compound[J].Chemical Physics Letters,2023,811:140217.

[26] Padalkar V S,Seki S.Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters[J].Chemical Society Reviews,2016,45(1):169-202.

[27] Zhou P,Han K.ESIPT-based AIE luminogens:Design strategies,applications,and mechanisms[J].Aggregate,2022,3(5):160.

[28] Kwon J E,Park S Y.Advanced organic optoelectronic materials:Harnessing excited-state intramolecular proton transfer (ESIPT) process[J].Advanced Materials,2011,23(32):3615-3642.

[29] Zhao J,Ji S,Chen Y,et al.Excited state intramolecular proton transfer (ESIPT):From principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials[J].Physical Chemistry Chemical Physics,2012,14(25):8803-8817.

[30] Udhayakumari D,Jerome P,Vijay N,et al.ESIPT:An approach and future perspective for the detection of biologically important analytes[J].Journal of Luminescence,2024,267:120350.

[31] Zhao J,Jin B,Tang Z.Solvent-polarity-dependent conformation and ESIPT behaviors for 2-(benzimidazol-2-yl)-3-hydroxychromone:A novel dynamical mechanism[J].Physical Chemistry Chemical Physics,2022,24(45):27660-27669.

[32] Jankowska J,Sobolewski A L.Modern theoretical approaches to modeling the excited-state intramolecular proton transfer:An Overview[J].Molecules,2021,26(17):5140.

[33] Johnee Britto N,Panneerselvam M,Deepan Kumar M,et al.Substituent effect on the photophysics and ESIPT Mechanism of N,N′-Bis(salicylidene)-p-phenylenediamine:A DFT/TD-DFT analysis[J].Journal of Chemical Information and Modeling,2021,61(4):1825-1839.

[34] Abhijnakrishna R,Velmathi S.ESIPT-PET based triphenylamine-anthraquinone probe for the detection of phosgene:DFT studies,real-time application in soil samples and test strips[J].Analyst,2023,148(10):2267-2276.

[35] Zhao J,Li Q,Guo M,et al.Solvent effects on the ESIPT emission of salicylaldehyde Schiff base derivative:A theoretical reconsideration[J].Journal of Molecular Liquids,2024,408:125265.

[36] Chai S,Zhao G J,Song P,et al.Reconsideration of the excited-state double proton transfer (ESDPT) in 2-aminopyridine/acid systems:Role of the intermolecular hydrogen bonding in excited states[J].Physical Chemistry Chemical Physics,2009,11(21):4385-4390.

[37] Yang Y,Ding Y,Zhao Y,et al.Reaction mechanism of photodeamination induced by excited-state intramolecular proton transfer of the anthrol molecule[J].The Journal of Physical Chemistry A,2018,122(24):5409-5417.

[38] Zhao Y,Ding Y,Yang Y,et al.Fluorescence deactivation mechanism for a new probe detecting phosgene based on ESIPT and TICT[J].Organic Chemistry Frontiers,2019,6(5):597-602.

[39] Luo X,Shi W,Yang Y,et al.Fluorescence probes detecting O■ based on intramolecular charge transfer and excited-state intramolecular proton transfer mechanisms[J].Journal of Molecular Liquids,2021,322:114886.

[40] Xin X,Zhao Y,Shi W,et al.Effects of twisted intramolecular charge transfer behavior on excited-state intramolecular proton transfer reactions of methyl benzoate derivatives in water solution[J].The Journal of Physical Chemistry A,2022,126(31):5126-5133.

[41] Yang Y,Zhao Y,Shi W,et al.Colorimetric fluorescence probe detecting Hg2+ and OCl- based on intramolecular charge transfer and excited-state intramolecular proton transfer mechanisms[J].Journal of Luminescence,2019,209:102-108.

[42] Song Y,Liu S,Yang Y,et al.A detecting Al3+ ion luminophor 2-(Anthracen-1-yliminomethyl)-phenol:Theoretical investigation on the fluorescence properties and ESIPT mechanism[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2019,208:309-314.

[43] Zhuang H,Shi W,Zhao G,et al.Unveiling the sensing mechanism and luminescence property of a new ESIPT-based fluorescent sensor for detecting Zn2+[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,282:121650.

[44] Wu X,Shi W,Yang Y,et al.Multi-targeted fluorescent probes for detection of Zn(II) and Cu(II) ions based on ESIPT mechanism[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2023,287:122051.

[45] Qiao T,Shi W,Zhuang H,et al.Fluorescence enhancement mechanism of new 4-cyanobiphenyl-based schiff base probe by coordination interaction with cadmium ion[J].Journal of Luminescence,2024,269:120413.

[46] Wu X,Zhuang H,Yang Y,et al.Insight into the probe BTFMB responses to hydrogen peroxide switching on ESIPT reaction[J].Chemical Physics Letters,2022,807:140067.

[47] Zhang X,Zhuang H,Zhao G,et al.Reversible ratiometric fluorescence probe for the detection of HClO/H2S based on excited state intramolecular proton transfer mechanism[J].Molecular Physics,2024,122(11):e2289695.

[48] Zhang Y,Sun M,Li Y.How was the proton transfer process in bis-3,6-(2- benzoxazolyl)-pyrocatechol,single or double proton transfer?[J].Scientific Reports,2016,6(1):25568.

[49] Yang Y,Zhao J,Li Y.Theoretical study of the esipt process for a new natural product quercetin[J].Scientific Reports,2016,6(1):32152.

[50] Lan R F,Yang Y F,Ma Y Z,et al.The theoretical study of excited-state intramolecular proton transfer of 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2017,183:37-44.

[51] Zhao Y,Yang Y,Ma Y,et al.Stimuli-responsive luminescent coumarin thiazole hybrid dye:Mechanism of excited-state intramolecular double proton transfer[J].Journal of Luminescence,2018,201:189-195.

[52] Luo X,Yang Y,Li Y.Theoretical insights into ESIPT mechanism of the two protons system BH-BA in dichloromethane solution[J].Journal of Molecular Liquids,2020,319:114145.

[53] Zhao G,Yang Y,Zhang C,et al.The theoretical study of excited-state intramolecular proton transfer of N,N,-bis (salicylidene)-(2-(3″4′-diaminophenyl) benzothiazole)[J].Journal of Luminescence,2021,230:117741.

[54] Xin X,Shi W,Zhao Y,et al.Theoretical insights into the excited-state single and double proton transfer processes of DEASH in water[J].Chemical Physics,2023,570:111882.

[55] Zhao G,Shi W,Xin X,et al.Exploring the excited state multi-proton transfer path and the associated photophysical properties of P-TNS molecule by DFT and TDDFT theory[J].Journal of Luminescence,2024,266:120305.

[56] Shi W,Yang Y,Zhao Y,et al.The solvent effect on the excited-state intramolecular proton transfer of cyanine derivative molecules[J].Organic Chemistry Frontiers,2019,6(10):1674-1680.

[57] Yang Y,Chen Y,Zhao Y,et al.Under different solvents excited-state intramolecular proton transfer mechanism and solvatochromic effect of 2-(2-hydroxyphenyl) benzothiazole molecule[J].Journal of Luminescence,2019,206:326-334.

[58] Chen Y,Yang Y,Zhao Y,et al.Effect of solvent environment on excited state intramolecular proton transfer in 2-(4-(dimethylamino)phenyl)-3-hydroxy-6,7-dimethoxy-4h-chromen-4-one[J].Physical Chemistry Chemical Physics,2019,21(32):17711-17719.

[59] Chen Y,Yang Y,Zhao Y,et al.The effect of different environments on excited-state intramolecular proton transfer in 4′-methoxy-3-hydroxyflavone[J].Organic Chemistry Frontiers,2019,6(2):218-225.

[60] Li Y,Zhao Y,Yang Y,et al.Revelation solvent effects:excited state hydrogen bond and proton transfer of 2-(benzo[d]thiazol-2-yl)-3-methoxynaphthalen-1-ol[J].Organic Chemistry Frontiers,2019,6(15):2780-2787.

[61] Zhao G,Shi W,Xin X,et al.Solvent dependence of ESIPT process in 2-(2-carbonmethoxy-3,4-dichloro-6-hydroxyphenyl) compounds[J].Journal of Molecular Liquids,2022,354:118807.

[62] Liu G,Xin X,Zhuang H,et al.Unlocking the potential of solvent polarity in directing ESIPT pathways of HHMB with dual hydrogen bond acceptors:a DFT/TD-DFT study[J].Molecular Physics,2024,122(13):e2301387.

[63] Zhang Y J,Zhao J F,Li Y Q.The investigation of excited state proton transfer mechanism in water-bridged 7-azaindole[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2016,153:147-151.

[64] Li Y,Yang Y,Ding Y.The new competitive mechanism of hydrogen bonding interactions and transition process for the hydroxyphenyl imidazo [1,2-a] pyridine in mixed liquid solution[J].Scientific Reports,2017,7(1):1574.

[65] Ma Y-Z,Yang Y-F,Shi W,et al.The order of multiple excited state proton transfer in ternary complex of norharmane and acetic acids[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2018,202:30-35.

[66] Liu S,Zhao Y,Zhang C,et al.The novel excited state intramolecular proton transfer broken by intermolecular hydrogen bonds in HOF system[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2019,219:164-172.

[67] Yang Y,Shi W,Chen Y,et al.The direct evidence for ESPT route and ICT emission of N6-Methyladenine in aqueous solution[J].Journal of Luminescence,2021,229:117698.

[68] Xin X,Shi W,Zhao Y,et al.Manipulating the ESPT process and photophysical properties of HQCT by water-based hydrogen bond bridge[J].Journal of Molecular Liquids,2023,391:123275.

[69] Arabi A A,Matta C F.Effects of external electric fields on double proton transfer kinetics in the formic acid dimer[J].Physical Chemistry Chemical Physics,2011,13(30):13738-13748.

[70] Li Y,Li Y,Su Q,et al.Tuning of energetics and reaction mechanism of water-assisted intramolecular proton transfer of 7-azaindole by external electric field applied in various directions:A TD-DFT study[J].Theoretical Chemistry Accounts,2017,136(2):27.

[71] Zhao J,Zheng Y.Elaboration and controlling excited state double proton transfer mechanism of 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol[J].Scientific Reports,2017,7(1):44897.

[72] Zhuang H,Shi W,Zhao G,et al.Regulating and controlling the stepwise ESDPT channel of BP(OH)2DCEt2 using the strategy of solvent polarity and external electric field[J].Physical Chemistry Chemical Physics,2024,26(15):12016-12026.

[73] Tang X,Zhang Y,Sun C.Effect of external electric fields on the ESDPT process and photophysical properties of 1,8-dihydroxy-2-naphthaldehyde[J].Physical Chemistry Chemical Physics,2024,26(13):10439-10448.

[74] Li Y,Ma Y,Yang Y,et al.Effects of different substituents of methyl 5-R-salicylates on the excited state intramolecular proton transfer process[J].Physical Chemistry Chemical Physics,2018,20(6):4208-4215.

[75] Yang Y,Luo X,Ma F,et al.Substituent effect on ESIPT mechanisms and photophysical properties of HBT derivatives[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2021,250:119375.

[76] Chen L,He H,Huang X,et al.Control of the fluorescence molecule 2-(2′-hydroxyphenyl) benzothiazole derivatives by introducing electron-donating and withdrawing substituents groups[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2023,296:122666.

[77] Zhao G,Shi W,Xin X,et al.Insights from computational analysis:Excited-state hydrogen-bonding interactions and ESIPT processes in phenothiazine derivatives[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2023,286:121935.

[78] Zhang X,Jia R,Shi W,et al.The effect of the number of conjugated C=C bonds on the ESIPT and ICT reactions of SNCN derivatives[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2024,319:124553.

[79] Zhao G,Shi W,Yang Y,et al.Substituent effects on excited-state intramolecular proton transfer reaction of 2-aryloxazoline derivatives[J].The Journal of Physical Chemistry A,2021,125(13):2743-2750.

[80] Yan C C,Liu Y P,Yang W Y,et al.Excited-state intramolecular proton transfer parent core engineering for six-level system lasing toward 900 nm[J].Angewandte Chemie International Edition,2022,61(48):202210422.

[81] Qiao T,Shi W,Zhuang H,et al.Effects of substitution and conjugation on photophysical properties of ESIPT-based fluorophores with the core of 4-aminophthalimide[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2024,309:123802.

[82] Xin X,Shi W,Zhao Y,et al.Effectively regulation of the ESIPT process via ring-annelation modification for schiff base derivatives:A theoretical study[J].Dyes and Pigments,2024,224:112020.

[83] Yang Y,Ding Y,Shi W,et al.The effects of amino group meta-and para-substitution on ESIPT mechanisms of amino 2-(2’-hydroxyphenyl) benzazole derivatives[J].Journal of Luminescence,2020,218:116836.

[84] Li Q,Wan Y,Zhou Q,et al.Exploring the effect of nitrile substituent position on fluorescence quantum yield of ESIPT-based oxazoline derivatives:A TDDFT investigation[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,272:120953.

[85] Cao Y,Shang C,Zheng Z,et al.Substituent derivatives of benzothiazole-based fluorescence probes for hydrazine with conspicuous luminescence properties:A theoretical study[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,279:121449.

[86] Liang X,Zhang Z,Fang H.Different positions of cyano substitution controlled directionality of ESIPT processes with two asymmetric proton acceptors system:A TD-DFT study[J].Journal of Photochemistry and Photobiology A:Chemistry,2023,436:114353.

基本信息:

DOI:

中图分类号:O642.1;O643.1

引用信息:

[1]庄洪斌,乔田田,石薇等.激发态质子转移的机制探究及其性质调控[J].山东师范大学学报(自然科学版),2024,39(04):289-304.

基金信息:

国家自然科学基金资助项目(12404300)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文