159 | 0 | 51 |
下载次数 | 被引频次 | 阅读次数 |
绿色技术创新和经济高质量耦合发展为实现经济增长与生态文明提供强有力支撑。基于2008-2022年山东省16地市面板数据,从投入、产出两方面和经济运行、协调发展、生态文明、对外开放、民生福祉五个维度分别构建绿色技术创新和经济高质量发展的评价指标体系,采用耦合协调度模型和空间杜宾模型分析两系统的时空耦合及其影响因素。结果显示,山东省绿色技术创新水平、经济高质量发展水平均呈波动递增趋势,二者的耦合协调度从2008年的0.369 7上升到2022年的0.579 7;协调度区域差异明显,呈现出以青岛市和济南市为中心向四周逐渐递减的空间格局;增加研发投入强度、调整产业结构、提升城市化水平、增强政府调控能力、扩大对外开放程度、降低化石能源消费比重是提高耦合水平的推动因素;提出加快绿色转型、优化能源结构等对策建议,为山东省政府制定发展规划和战略提供参考。
Abstract:The coupling of green technology innovation and high-quality economic development provides strong support for achieving economic growth and ecological civilization. Based on panel data from 16 cities in Shandong Province from 2008 to 2022, an evaluation index system for green technology innovation and high-quality economic development is constructed from the perspectives of input and output, as well as five dimensions of economic operation, coordinated development, ecological civilization, openness up to the outside world, and people′s well-being. The coupling coordination degree model and spatial Durbin model are used to analyze the spatiotemporal coupling between the influencing factors and the two systems. The results show that the levels of green technology innovation and high-quality economic development in Shandong Province have both exhibited a fluctuating up ward trend. The coupling coordination degree between the two increased from 0.369 7 in 2008 to 0.579 7 in 2022. There are significant regional differences in coordination, showing a spatial pattern that gradually decreases from Qingdao and Jinan as the center to the surrounding areas key factors driving the improvement of the coupling level include increasing R&D investment intensity, adjusting industrial structure, improving urbanization level, enhancing government regulation capacity, expanding openness up to the outside world, and reducing the proportion of fossil energy consumption are driving factors for improving coupling level. Finally, suggestions such as accelerating green transformation and optimizing energy structure are proposed, providing references for the Shandong People′s Govenment of Shandong Province to formulate development plans and strategies.
[ 1 ] 孙勇,樊杰,孙中瑞,等.黄河流域绿色技术创新时空格局及其影响因素分解[J].生态经济,2022,38(5):60-67.
[ 2 ] Ernest B,David W.Regulation as a means for the social control of technology[J].Informa UK Limited,1994,6(3):259-272.
[ 3 ] 孙燕铭,谌思邈.长三角区域绿色技术创新效率的时空演化格局及驱动因素[J].地理研究,2021,40(10):2743-2759.
[ 4 ] 段德忠,杜德斌.中国城市绿色技术创新的时空分布特征及影响因素[J].地理学报,2022,77(12):3125-3145.
[ 5 ] 赵林,高晓彤,吴殿廷.黄河流域绿色技术创新空间关联网络结构与影响因素[J].人文地理,2023,38(4):102-111.
[ 6 ] 孙小婷,李敏.绿色技术创新、新质生产力与低碳经济高质量发展[J].统计与决策,2024,40(14):29-34.
[ 7 ] Lin T,Wang L,Wu J.Environmental regulations,green technology innovation,and high-quality economic development in China:Application of mediation and threshold effects[J].Journal of Zoological Systematics and Evolutionary Research,2022,56(4):132-143.
[ 8 ] 曾刚,胡森林.技术创新对黄河流域城市绿色发展的影响研究[J].地理科学,2021,41(8):1314-1323.
[ 9 ] 范柏乃,吕丹阳,顾贾能.城市技术创新能力、交易效率与经济发展质量[J].科学学研究,2022,40(10):1864-1873.
[10] 苑凯,胡彪,牛亭云.区域绿色技术创新与生态经济发展耦合协调时空演化分析—以京津冀地区为例[J].大连理工大学学报:社会科学版,2023,44(6):43-52.
[11] 韩永楠,葛鹏飞,周伯乐.中国市域技术创新与绿色发展耦合协调演变分异[J].经济地理,2021,41(6):12-19.
[12] 刘云强,邵小彧,刘莎,等.空间视角下绿色技术创新动力解构:政策推进与市场拉动[J].科技进步与对策,2022,39(13):54-64.
[13] 任保平,李禹墨.新时代我国高质量发展评判体系的构建及其转型路径[J].陕西师范大学学报:哲学社会科学版,2018,47(3):105-113.
[14] 周筱扬,左国存.我国中部地区科技创新与经济高质量发展耦合协调度的时空演化[J].科技管理研究,2022,42(22):77-85.
[15] Meng X L,Jia L M.Train timetable stability evaluation based on analysis of interior and exterior factors information entropy[J].Applied Mathematics & Information Sciences,2014,8(3):1319-1325.
[16] 崔丹,卜晓燕,徐祯,等.中国资源型城市高质量发展综合评估及影响机理[J].地理学报,2021,76(10):2489-2503.
[17] 吴玉鸣,张燕.中国区域经济增长与环境的耦合协调发展研究[J].资源科学,2008(1):25-30.
[18] 张芷若,谷国锋.科技金融与科技创新耦合协调度的空间格局分析[J].经济地理,2019,39(4):50-58.
[19] 李勇,吴孟思.绿色技术创新、碳减排与经济高质量发展的时空耦合及影响因素分析[J].统计与决策,2023,39(14):77-81.
[20] 张虎,尹子擘,薛焱.新型城镇化与绿色发展耦合协调水平及其影响因素[J].统计与决策,2022,38(11):93-98.
[21] Fischer M M,Nijkamp P.Handbook of regional science[M].Berlin:Springer,2014.
基本信息:
DOI:
中图分类号:F127
引用信息:
[1]潘杨,李俊莉.山东省绿色技术创新与经济高质量发展的时空耦合与影响因素分析[J].山东师范大学学报(自然科学版),2024,39(04):339-349.
基金信息:
山东省自然科学基金资助项目(ZR2021MD076)