山东师范大学信息科学与工程学院;北京市农林科学院智能装备技术研究中心;
在低光照条件下拍摄的图像会严重影响视觉辨识能力。低光图像增强就是解决低光照图像系列退化问题的方法,可以有效地提高人眼和机器视觉对于低光图像的辨识和理解能力。传统的低光照图像增强方法通常需要根据不同场景设计特定的先验知识,而这些先验知识的推导过程往往具有局限性,不适于广泛的实际应用。随着大规模数据集的诞生,基于深度学习的低光图像增强方法已成为计算机视觉领域备受关注的研究课题之一。本文对低光图像增强领域的研究及进展进行全面综述,通过系统地总结和分类增强方法与数据集,分析当前研究的主要挑战与技术难点,并进一步探讨了该领域未来的发展方向与潜在的研究趋势,旨在为后续研究提供有价值的参考与启示。
142 | 0 | 34 |
下载次数 | 被引频次 | 阅读次数 |
[ 1 ] Wang W,Wu X,Yuan X,et al.An experiment-based review of low-light image enhancement methods[J].IEEE Access,2020,8:87884-87917.
[ 2 ] Faster R.Towards real-time object detection with region proposal networks[J].Advances in Neural Information Processing Systems,2015,9199:2969239-2969250.
[ 3 ] Wu X,Wu Z,Guo H,et al.Dannet:A one-stage domain adaptation network for unsupervised nighttime semantic segmentation[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Virtual,Online,2021:15769-15778.
[ 4 ] Liu J,Xu D,Yang W,et al.Benchmarking low-light image enhancement and beyond[J].International Journal of Computer Vision,2021,129:1153-1184.
[ 5 ] Zheng S,Ma Y,Pan J,et al.Low-light image and video enhancement:A comprehensive survey and beyond[EB/OL].(2022-12-11)[2025-03-01].http://arxiv.org/abs/2212.10772.
[ 6 ] J?hne B.Digital image processing[M].Heidelberg:Springer Science & Business Media,2005.
[ 7 ] Pizer S M,Amburn E P,Austin J D,et al.Adaptive histogram equalization and its variations[J].Computer Vision,Graphics,and Image Processing,1987,39(3):355-368.
[ 8 ] Land E H,McCann J J.Lightness and retinex theory[J].Josa,1971,61(1):1-11.
[ 9 ] Jiang Y,Gong X,Liu D,et al.Enlightengan:Deep light enhancement without paired supervision[J].IEEE Transactions on Image Processing,2021,30:2340-2349.
[10] Xiong W,Liu D,Shen X,et al.Unsupervised low-light image enhancement with decoupled networks[C].26th International Conference on Pattern Recognition (ICPR),Montreal,Canada,2022:457-463.
[11] Lee H,Sohn K,Min D.Unsupervised low-light image enhancement using bright channel prior[J].IEEE Signal Processing Letters,2020,27:251-255.
[12] Hu J,Guo X,Chen J,et al.A two-stage unsupervised approach for low light image enhancement[J].IEEE Robotics and Automation Letters,2021,6(4):8363-8370.
[13] Wang R,Jiang B,Yang C,et al.MAGAN:Unsupervised low-light image enhancement guided by mixed-attention[J].Big Data Mining and Analytics,2022,5(2):110-119.
[14] Fu Y,Hong Y,Chen L,et al.LE-GAN:Unsupervised low-light image enhancement network using attention module and identity invariant loss[J].Knowledge-Based Systems,2022,240:108010.
[15] Nguyen H,Tran D,Nguyen K,et al.Psenet:Progressive self-enhancement network for unsupervised extreme-light image enhancement[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision,Waikoloa,USA,2023:1756-1765.
[16] Zhang F,Shao Y,Sun Y,et al.Self-supervised low-light image enhancement via histogram equalization prior[C]//Chinese Conference on Pattern Recognition and Computer Vision,Xiamen,China,2023:63-75.
[17] Yang S,Ding M,Wu Y,et al.Implicit neural representation for cooperative low-light image enhancement[C]//Proceedings of the IEEE International Conference on Computer Vision,Paris,France,2023:12918-12927.
[18] Liang D,Li L,Wei M,et al.Semantically contrastive learning for low-light image enhancement[C]//Proceedings of the AAAI Conference on Artificial Intelligence,Virtual,Online,2022:1555-1563.
[19] Liang Z,Li C,Zhou S,et al.Iterative prompt learning for unsupervised backlit image enhancement[C]//Proceedings of the IEEE International Conference on Computer Vision,Paris,France,2023:8094-8103.
[20] Fu Z,Yang Y,Tu X,et al.Learning a simple low-light image enhancer from paired low-light instances[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Vancouver,Canada,2023:22252-22261.
[21] Guo C,Li C,Guo J,et al.Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Virtual,Online,2020:1780-1789.
[22] Ma L,Ma T,Liu R,et al.Toward fast,flexible,and robust low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,USA,2022:5637-5646.
[23] Zhang R,Yao S,Lu L,et al.SCNet:A self-calibrating unsupervised low-light image enhancement network[J].IEEE Sensors Journal,2023,24:30765-30772.
[24] Li J,Li B,Tu Z,et al.Light the night:A multi-condition diffusion framework for unpaired low-light enhancement in autonomous driving[C]//Proceedings of the IEEE Computer Soliety Conference on Computer Vision and Pattern Recognitionm,Seattle,USA,2024:15205-15215.
[25] Jiang H,Luo A,Liu X,et al.Lightendiffusion:Unsupervised low-light image enhancement with latent-retinex diffusion models[C]//European Conference on Computer Vision,Milan,Italy,2024:161-179.
[26] Lore K G,Akintayo A,Sarkar S.LLNet:A deep autoencoder approach to natural low-light image enhancement[J].Pattern Recognition,2017,61:650-662.
[27] Wei C,Wang W,Yang W,et al.Deep retinex decomposition for low-light enhancement[EB/OL].(2018-08-14)[2025-03-01],http://arxiv.org/abs/1808.04560.
[28] Wu W,Weng J,Zhang P,et al.Uretinex-net:Retinex-based deep unfolding network for low-light image enhancement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,New Orleans,USA,2022:5901-5910.
[29] Zhou D,Yang Z,Yang Y.Pyramid diffusion models for low-light image enhancement[J].(2025-05-17)[2025-03-01],https://arxiv.org/abs/2305.10028.
[30] Ren W,Liu S,Ma L,et al.Low-light image enhancement via a deep hybrid network[J].IEEE Transactions on Image Processing,2019,28(9):4364-4375.
[31] Wang R,Zhang Q,Fu C W,et al.Underexposed photo enhancement using deep illumination estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Long Beach,USA,2019:6849-6857.
[32] Wang Y,Wan R,Yang W,et al.Low-light image enhancement with normalizing flow[C]//Proceedings of the AAAI Conference on Artificial Intelligence,Virtual,Online,2022:2604-2612.
[33] Xu X,Wang R,Fu C W,et al.SNR-aware low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,USA,2022:17714-17724.
[34] Huang J,Liu Y,Zhao F,et al.Deep Fourier-based exposure correction network with spatial-frequency interaction[C]//European Conference on Computer Vision,Tel Aviv,Israel,2022:163-180.
[35] Wang H,Xu K,Lau R W H.Local color distributions prior for image enhancement[C]//European Conference on Computer Vision,Tel Aviv,Israel,2022:343-359.
[36] Wu Y,Pan C,Wang G,et al.Learning semantic-aware knowledge guidance for low-light image enhancement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Vancouver,Canada,2023:1662-1671.
[37] Wang Y,Yu Y,Yang W,et al.Exposurediffusion:Learning to expose for low-light image enhancement[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,Paris,France,2023:12438-12448.
[38] Cai Y,Bian H,Lin J,et al.Retinexformer:One-stage retinex-based transformer for low-light image enhancement[C]//Proceedings of the IEEE International Conference on Computer Vision,Paris,France,2023:12504-12513.
[39] Yu N,Shi H,Han Y.Joint correcting and refinement for balanced low-light image enhancement[J].IEEE Transactions on Multimedia,2024,26:6310-6324.
[40] Yi X,Xu H,Zhang H,et al.Diff-retinex:Rethinking low-light image enhancement with a generative diffusion model[C]//Proceedings of the IEEE International Conference on Computer Vision,Paris,France,2023:12302-12311.
[41] Wang C,Wu H,Jin Z.Fourllie:Boosting low-light image enhancement by fourier frequency information[C]//Proceedings of the 31st ACM International Conference on Multimedia,Ottawa,Canada,2023:7459-7469.
[42] Sun X,Li X,cheng D,et al.Gradient and brightness guided low-light enhancement with attention-based self-paced learning[C]// IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP),Seoul,Korea,2024:3435-3439.
[43] Shakibania H,Raoufi S,Khotanlou H.Cdan:Convolutional dense attention-guided network for low-light image enhancement[J].Digital Signal Processing,2025,156:104802.
[44] Xu X,Wang R,Lu J.Low-light image enhancement via structure modeling and guidance[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Ottawa,Canada,2023:9893-9903.
[45] Hou J,Zhu Z,Hou J,et al.Global structure-aware diffusion process for low-light image enhancement[J].Advances in Neural Information Processing Systems,2023,36:198465.
[46] Nguyen C M,Chan E R,et al.Diffusion in the dark:A diffusion model for low-light text recognition[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision,Waikoloa,USA,2024:4146-4157.
[47] Shi J,Yu S,Li H,et al.Underwater image enhancement based on adaptive color correction and multi-scale fusion[J].Multimedia Tools and Applications,2024,83(5):12535-12559.
[48] Guo Z,Qi Z,Fu S,et al.RTA-Net:A novel low-light image enhancement network based on retinex-net and attention mechanism[C]// International Conference on Artificial Intelligence and Electromechanical Automation,Shenzhen,China,2024:257-260.
[49] He Z,Ran W,Liu S,et al.Low-light image enhancement with multi-scale attention and frequency-domain optimization[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34:2861-2875.
[50] Jiang H,Luo A,Fan H,et al.Low-light image enhancement with wavelet-based diffusion models[J].ACM Transactions on Graphics,2023,42(6):1-14.
[51] Sun X,De C.Progressive prompt-driven low-light image enhancement with frequency aware learning[J].IEEE Transactions on Multimedia,(to be published).
[52] Wang L,Zhao L,Zhong T,et al.Low-light image enhancement using generative adversarial networks[J].Scientific Reports,2024,14(1):18489.
[53] Feng Y,Hou S,Lin H,et al.Difflight:integrating content and detail for low-light image enhancement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Seattle,USA,2024:6143-6152.
[54] Wang Z,Li D,Li G,et al.Multimodal low-light image enhancement with depth information[C]//Proceedings of the 32nd ACM International Conference on Multimedia,Melbourne,Australia,2024:4976-4985.
[55] Chan C Y,Siu W C,Chan Y H,et al.Anlightendiff:Anchoring diffusion probabilistic model on low light image enhancement[J].IEEE Transactions on Image Processing,2024,33:6324-6339.
[56] Xiang Y,Hu G,Chen M,et al.WMANet:Wavelet-based multi-scale attention network for low-light image enhancement[J].IEEE Access,2024,12:105674-105685.
[57] Wei X,Lin X,Li Y.DA-DRN:A degradation-aware deep Retinex network for low-light image enhancement[J].Digital Signal Processing,2024,144:104256.
[58] Ye D,Ni Z,Yang W,et al.Glow in the dark:Low-light image enhancement with external memory[J].IEEE Transactions on Multimedia,2024,26:2148-2163.
[59] He Z,Ran W,Liu S,et al.Low-light image enhancement with multi-scale attention and frequency-domain optimization[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34:2861-2875.
[60] Dudhane A,Zamir S W,Khan S,et al.Burst image restoration and enhancement[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,36:1-14.
[61] Zou W,Gao H,Ye T,et al.VQCNIR:Clearer night image restoration with vector-quantized codebook[C]//Proceedings of the AAAI Conference on Artificial Intelligence,Vancouver Canada,2024:7873-7881.
[62] She C,Han F,Wang L,et al.MPC-Net:Multi-prior collaborative network for low-light image enhancement[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34:10385-10398.
[63] Wei Z,Wang Y,Sun L,et al.ClassLIE:Structure-and illumination-adaptive classification for low-light image enhancement[J].IEEE Transactions on Artificial Intelligence,2024,5:4765-4775..
[64] Yao Z,Fan G,Fan J,et al.Spatial-frequency dual-domain feature fusion network for low-light remote sensing image enhancement[J].IEEE Transactions on Geoscience and Remote Sensing,2024,62:1-16.
[65] Zhu Z,Yang X,Lu R,et al.Ghost imaging in the dark:a multi-illumination estimation network for low-light image enhancement[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,35:1576-1590.
[66] Kang S,Gao S,Wu W,et al.Image intrinsic components guided conditional diffusion model for low-light image enhancement[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34:13244-13256.
[67] Yang W,Wang S,Fang Y,et al.From fidelity to perceptual quality:A semi-supervised approach for low-light image enhancement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Virtual,Online,2020:3063-3072.
[68] Luo Y,You B,Yue G,et al.Pseudo-supervised low-light image enhancement with mutual learning[J].IEEE Transactions on Circuits and Systems for Video Technology,2023,34(1):85-96.
[69] Shi Y,Fu X,Li Y,et al.A semi-supervised underexposed image enhancement network with supervised context attention and multi-exposure fusion[J].IEEE Transactions on Multimedia,2023,26:1229-1243.
[70] Yang W,Wang W,Huang H,et al.Sparse gradient regularized deep retinex network for robust low-light image enhancement[J].IEEE Transactions on Image Processing,2021,30:2072-2086.
[71] Bychkovsky V,Paris S,Chan E,et al.Learning photographic global tonal adjustment with a database of input/output image pairs[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Colorado,USA,2011:97-104.
[72] Hai J,Xuan Z,Yang R,et al.R2rnet:Low-light image enhancement via real-low to real-normal network[J].Journal of Visual Communication and Image Representation,2023,90:103712.
[73] Wang T,Zhang K,Shen T,et al.Ultra-high-definition low-light image enhancement:A benchmark and transformer-based method[C]//Proceedings of the AAAI Conference on Artificial Intelligence,Washington,USA,2023,2654-2662.
基本信息:
DOI:
中图分类号:TP391.41
引用信息:
[1]孙建德,孙晓燕,张瑞瑞等.低光图像增强方法综述[J].山东师范大学学报(自然科学版),2025,40(01):1-20.
基金信息:
山东省自然科学基金联合基金重点资助项目(ZR2022LZH012)