8 | 0 | 2 |
下载次数 | 被引频次 | 阅读次数 |
脂质转移蛋白(Lipid transfer protein, LTP)是一类在植物细胞中普遍存在的小分子转运蛋白,主要负责脂类的转运和各种生化反应产物的输送。本研究在前期鉴定到的谷子干旱胁迫响应基因SiLTP1、并获得该基因的谷子阳性转基因株系的基础上,对盐胁迫下其脂质组学进行分析。通过GC-MS检测,显示双半乳糖基二酰甘油(DGDG)和单半乳糖基二酰甘油(MGDG)在谷子品种Ci846和过表达SiLTP1株系幼苗中的含量最高。在200 mmol·L-1的NaCl处理后,过表达SiLTP1的谷子幼苗叶片中DGDG/MGDG的含量较Ci846的高。同时,磷脂酰甘油(PG)和甘油二脂(DG)等脂质分子的含量也有所增加。基于以上结果,显示脂质转移蛋白可通过调控磷脂和脂类分子等在SiLTP1过表达谷子幼苗中的含量,进而参与谷子盐胁迫响应。本研究为系统解析脂质转移蛋白参与谷子盐胁迫响应的机制、进而培育谷子耐盐品种提供了理论依据及候选基因资源。
Abstract:Lipid transfer proteins(LTPs) are a class of small molecular transport proteins widely present in plant cells, primarily responsible for the transport of lipids and the delivery of various biochemical reaction products. In this study, based on the previously identified drought stress-responsive gene SiLTP1 in millet and the obtained positive transgenic millet lines overexpressing SiLTP1, lipidomic analysis under salt stress was performed. GC-MS analysis revealed that the levels of digalactosyldiacylglycerol(DGDG) and monogalactosyldiacylglycerol(MGDG) were the highest in the seedlings of millet variety Ci846 and the SiLTP1-overexpressing lines. After treatment with 200 mmol·L-1 NaCl, the levels of DGDG/MGDG in the leaves of SiLTP1-overexpressing millet seedlings were higher than those in Ci846. At the same time, the levels of phosphatidylglycerol(PG) and diglycerides(DG) also increased. Based on these results, it is suggested that lipid transfer proteins can modulate the content of phospholipids and lipid molecules in the SiLTP1-overexpressing millet seedlings, thereby participating in the response to salt stress in millet. This study provides theoretical support and candidate gene resources for the systematic analysis of the mechanisms through which lipid transfer proteins participate in millet′s salt stress response, offering a foundation for the development of salt-tolerant millet varieties.
[ 1 ] Vignols F,Wigger M,Garc?′a-Garrido J M,et al.Rice lipid transfer protein (LTP) genes belong to a complex multigene family and are differentially regulated[J].Gene,1997,195(2):177-186.
[ 2 ] 程赫,田双慧,张洋,等.毛果杨nsLTP基因家族全基因组水平鉴定及其表达特性分析[J].植物研究,2022,42(3):412-423.
[ 3 ] Fang C W,Wu S W,Li Z W,et al.A systematic investigation of lipid transfer proteins involved in male fertility and other biological processes in maize[J].International Journal of Molecular Sciences,2023,24(2):1660.
[ 4 ] Boutrot F,Chantret N,Gautier M F.Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLTP genes by EST data mining[J].BMC Genomics,2008,9(1):86.
[ 5 ] Sun J Y,Gaudet D A,Lu Z X,et al.Characterization and antifungal properties of wheat non-specific lipid transfer proteins[J].Molecular Plant-Microbe Interactions,2008,21(3):346-360.
[ 6 ] Zaidi M A,O’Leary S J,Gagnon C,et al.A triticale tapetal non-specific lipid transfer protein (nsLTP) is translocated to the pollen cell wall[J].Plant Cell Reports,2020,39(9):1185-1197.
[ 7 ] Maldonado A M,Doerner P,Dixon R A,et al.A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis [J].Nature,2002,419(6905):399-403.
[ 8 ] 虞光辉.小麦nsLTPs基因及启动子的克隆与功能分析[D].泰安:山东农业大学,2015.
[ 9 ] Guo L,Yang H,Zhang X,et al.Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis[J].Journal of Experimental Botany,2013,64(6):1755-1767.
[10] 刘关君,田旭,刘昌财,等.西伯利亚蓼非特异性脂质转移蛋白编码序列的克隆及其盐胁迫下的表达[J].中国生物化学与分子生物学报,2008,24(12):1140-1145.
[11] 孙伟.非特异性脂转移蛋白与植物耐逆性的相关性研究[D].济南:山东师范大学,2003.
[12] García-Olmedo F,Molina A,Segura A,et al.The defensive role of nonspecific lipid-transfer proteins in plants[J].Trends in Microbiology,1995,3(2):72-74.
[13] Torres-Schumann S,Godoy J A,Pintor-Toro J A.A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants[J].Plant Molecular Biology,1992,18(4):749-757.
[14] Qin L,Chen E Y,Li F F,et al.Genome-wide gene expression profiles analysis reveal novel insights into drought stress in foxtail millet (Setaria italica L.)[J].International Journal of Molecular Sciences,2020,21(22):8520.
[15] Zhao Z Y,Tang S,Zhang Y M,et al.Evolutionary analysis and functional characterization of SiBRI1 as a brassinosteroid receptor gene in foxtail millet[J].BMC Plant Biology,2021,21(1):1-15.
[16] 王庆国,李臻,刘炜,等.应用定量蛋白质组学对谷子干旱响应蛋白的研究[J].山东农业科学,2018,50(4):1-8.
[17] Li N X,Ming C,Dong H M,et al.The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway[J].Science Direct,2017,16(3):559-571.
[18] Brutnell T P,Wang L,Swartwood K,et al.Setaria viridis:a model for C4 photosynthesis[J].Plant Cell,2010,22(8):2537-2544.
[19] Pan J W,Li Z,Wang Q G,et al.Comparative proteomic investigation of drought responses in foxtail millet[J].BMC Plant Biology,2018,18(1):1-19.
[20] 孟凡花,李臻,王庆国,等.谷子脂质转移蛋白基因SiLTP1的克隆及表达分析[J].山东农业科学,2021,53(10):1-7.
[21] Doust A N,Kellogg E A,Devos K M,et al.Foxtail millet:a sequence-driven grass model system[J].Plant Physiology & Biochemistry,2009,149(1):137-141.
[22] Muthamilarasan M,Prasad M.Small millets for enduring food security amidst pandemics[J].Trends in Plant Science,2021,26(1):33-40.
[23] 王一帆,李臻,潘教文,等.谷子SiRLK35基因克隆及功能分析[J].遗传,2017,39(5):413-422.
[24] 孟凡花,刘敏,沈傲,等.脂质转移蛋白SiLTP1基因参与谷子耐盐响应初探[J].作物学报,Acta Agronomica Sinica,2025,51(1):58-67.
[25] Routaboul J M,Fischer S F,Browse J.Trienoic fatty acids are required to maintain chloroplast function at low temperatures[J].Plant Physiology,2000,124(4):1697-1705.
[26] Iba K.Acclimative response to temperature stress in higher plants:approaches of gene engineering for temperature tolerance[J].Annual Review of Plant Biology,2002,53(1):225-245.
[27] Yamauchi Y,Furutera A,Seki K,et al.Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants[J].Plant Physiology and Biochemistry,2008,46(8-9):786-793.
[28] Mizusawa N,Wada H.The role of lipids in photosystem II[J].Biochimica et Biophysica Acta (BBA)-Bioenergetics,2012,1817(1):194-208.
[29] D?rmann P,Benning C.Galactolipids rule in seed plants[J].Trends in Plant Science,2002,7(3):112-118.
[30] Gigon A,Matos A R,Laffray D,et al.Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype columbia)[J].Annals of Botany,2004,94(3):345-351.
[31] Torres-Franklin M L,Gigon A,de Melo D F,et al.Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves[J].Physiologia Plantarum,2010,131(2):201-210.
[32] Wada H,Murata N.Lipids in photosynthesis:structure,function and genetics[M].Netherlands:Springer,1998:65-81.
[33] Sun Y L,Li F,Su N,et al.The increase in unsaturation of fatty acids of phosphatidylglycerol in thylakoid membrane enhanced salt tolerance in tomato[J].Photosynthetica,2010,48(3):400-408.
[34] 刘凤娇,于耸,刘冠.生物与非生物逆境胁迫下植物脂质调控机制及其研究进展[J].中国油料作物学报,2023,45(5):1062-1072.
[35] 崔俊美,魏家萍,董小云,等.PIP/PIPL:一类调控植物逆境响应和发育的植物内源性多肽[J].生物技术通报,2023,39(3):35-42.
基本信息:
DOI:
中图分类号:S515
引用信息:
[1]孟凡花,沈傲,刘敏等.盐胁迫下脂质转移蛋白SiLTP1转基因谷子的脂质组学分析[J].山东师范大学学报(自然科学版),2025,40(02):162-170.
基金信息:
国家自然科学基金资助项目(32171955,32201736); 山东省农业良种工程资助项目(2021LZGC006); 山东省重点研发计划资助项目(2021LZGC025); 山东省农业科学院农业科技创新工程资助项目(CXGC2023F13)