nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 03, v.39 210-232
基于图卷积网络的人体骨架行为识别方法综述
基金项目(Foundation): 国家自然科学基金资助项目(61976127)
邮箱(Email):
DOI:
摘要:

基于骨架数据的人体行为识别已成为计算机视觉领域最热门和最重要的研究课题之一。相较于其他数据类型,人体骨架数据不受光照、背景、视角变化的影响,使得该类行为识别方法具有更强的鲁棒性。此外,骨架数据是以拓扑图结构的形式存在,而图卷积是一种基于图结构的深度学习方法,能够高效地对人体骨架数据的特征进行提取和分类。因此,基于图卷积的方法已经成为处理骨架数据的主流。针对基于图卷积的行为识别方法的前沿性,对其进行全面和系统的总结和分析具有十分重要的意义。本文主要对基于图卷积方法行为识别技术的最新进展进行全面的综述,对相关方法进行分类与总结,并对基准数据集进行详细研究,最后讨论了未来的研究方向和趋势。

Abstract:

Skeleton-based action recognition has emerged as one of the most prominent and crucial research areas in computer vision. The use of human skeleton data in action recognition provides a higher degree of robustness to changes in light, background, and perspective, compared to other data modalities. Human skeleton data exists in the form of a topological graph structure, and graph convolution, which is a deep learning method based on graph structures, is capable of extracting and classifying the features of human skeleton data in an efficient manner. Therefore, graph convolution-based methods have become the mainstream approach for processing skeleton data. It is essential to comprehensively and systematically summarize and analyze the action recognition methods based on graph convolution. Accordingly, this paper provides a comprehensive review of the latest advancements in action recognition technology based on graph convolution methods. The relevant methods are classified and summarized, and the benchmark dataset is studied in detail. Finally, the future research direction and trend are discussed.

参考文献

[ 1 ] 李洪均,丁宇鹏,李超波,张士兵.基于特征融合时序分割网络的行为识别研究[J].计算机研究与发展,2020,57(1):145-158.

[ 2 ] Zhu W,Lan C,Xing J,et al.Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Phoenix,USA,2016:3697-3703.

[ 3 ] Liu J,Wang G,Duan L Y,et al.Skeleton-based human action recognition with global context-aware attention LSTM networks[J].IEEE Transactions on Image Processing,2017,27(4):1586-1599.

[ 4 ] Zhang S,Yang Y,Xiao J,et al.Fusing geometric features for skeleton-based action recognition using multilayer LSTM networks[J].IEEE Transactions on Multimedia,2018,20(9):2330-2343.

[ 5 ] Hou Y,Li Z,Wang P,et al.Skeleton optical spectra-based action recognition using convolutional neural networks[J].IEEE Transactions on Circuits and Systems for Video Technology,2016,28(3):807-811.

[ 6 ] Liu M,Liu H,Chen C.Enhanced skeleton visualization for view invariant human action recognition[J].Pattern Recognition,2017,68:346-362.

[ 7 ] Tang Y,Liu X,Yu X,et al.Learning from temporal spatial cubism for cross-dataset skeleton-based action recognition[J].ACM Transactions on Multimedia Computing,Communications,and Applications (TOMM),2022,18(2):1-24.

[ 8 ] Zhang S,Yang Y,Xiao J,et al.Fusing geometric features for skeleton-based action recognition using multilayer LSTM networks[J].IEEE Transactions on Multimedia,2018,20(9):2330-2343.

[ 9 ] Tang Y,Liu X,Yu X,et al.Learning from temporal spatial cubism for cross-dataset skeleton-based action recognition[J].ACM Transactions on Multimedia Computing,Communications,and Applications (TOMM),2022,18(2):1-24.

[ 10 ] Geng P,Li H,Wang F,et al.Adaptive multi-level graph convolution with contrastive learning for skeleton-based action recognition[J].Signal Processing,2022,201:108714.

[ 11 ] Wang L,Huynh D Q,Koniusz P A comparative review of recent kinect-based action recognition algorithms[J].IEEE Transactions on Image Processing,2019,29:15-28.

[ 12 ] Ren B,Liu M,Ding R,et al.A survey on 3d skeleton-based action recognition using learning method[J].Cyborg and Bionic Systems,2024,5:0100.

[ 13 ] 王帅琛,黄倩,张云飞,等.多模态数据的行为识别综述[J].中国图象图形学报,2022,27(11):3139-3159.

[ 14 ] 卢健,李萱峰,赵博,等.骨骼信息的人体行为识别综述[J].中国图象图形学报,2023,28(12):3651-3669.

[ 15 ] Sijie Yan,Yuanjun Xiong,Dahua Lin:Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition[C]// AAAI.New Orleans,USA,2018:7444-7452.

[ 16 ] Tang Y,Tian Y,Lu J,et al.Deep progressive reinforcement learning for skeleton-based action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,USA,2018:5323-5332.

[ 17 ] Wen Y H,Gao L,Fu H,et al.Graph CNNs with motif and variable temporal block for skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Honolulu,USA,2019,33(1):8989-8996.

[ 18 ] Li M,Chen S,Chen X,et al.Actional-structural graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,USA,2019:3595-3603.

[ 19 ] Shi L,Zhang Y,Cheng J,et al.Two-stream adaptive graph convolutional networks for skeleton-based actionrecognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:12026-12035.

[ 20 ] Shi L,Zhang Y,Cheng J,et al.Skeleton-based action recognition with directed graph neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,USA,2019:7912-7921.

[ 21 ] Shi L,Zhang Y,Cheng J,et al.Skeleton-based action recognition with multi-stream adaptive graph convolutional networks[J].IEEE Transactions on Image Processing,2020,29:9532-9545.

[ 22 ] Ye F,Pu S,Zhong Q,et al.Dynamic gcn:Context-enriched topology learning for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia.Seattle,USA,2020:55-63.

[ 23 ] Peng W,Hong X,Chen H,et al.Learning graph convolutional network for skeleton-based human action recognition by neural searching[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New York,USA,2020,34(3):2669-2676.

[ 24 ] Zhou Y,Cheng Z Q,He J Y,et al.Overcoming topology agnosticism:Enhancing skeleton-based action recognition through redefined skeletal topology awareness[EB/OL].(2023-05-09)[2024-06-01].https://arxiv.org/abs/2305.11468.

[ 25 ] Zheng Y,Huang H,Wang X,et al.Spatio-temporal fusion for human action recognition via joint trajectory graph[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Vancouver,Canada,2024,38(7):7579-7587.

[ 26 ] Myung W,Su N,Xue J H,et al.DeGCN:Deformable graph convolutional networks for skeleton-based action recognition[J].IEEE Transactions on Image Processing,2024,33:2477-2490.

[ 27 ] Wang L,Koniusz P.3mformer:Multi-order multi-mode transformer for skeletal action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver,Canada,2023:5620-5631.

[ 28 ] Cai D,Kang Y,Yao A,et al.Ske2Grid:skeleton-to-grid representation learning for action recognition[C]//International Conference on Machine Learning.Honolulu,USA,2023:3431-3441.

[ 29 ] Tian H,Ma X,Li X,et al.Skeleton-based action recognition with select-assemble-normalize graph convolutional networks[J].IEEE Transactions on Multimedia,2023,25:8527-8538.

[ 30 ] Yin X,Zhong J,Lian D,et al.Spatiotemporal progressive inward-outward aggregation network for skeleton-based action recognition[J].Pattern Recognition,2024,150:110262

[ 31 ] Lee J,Lee M,Cho S,et al.Leveragingspatio-temporal dependency for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Paris,France,2023:10255-10264.

[ 32 ] Gao X,Yang Y,Wu Y,et al.Learning heterogeneous spatial–temporal context for skeleton-based action recognition[J].IEEE Transactions on Neural Networks and Learning Systems,2023(06),1-12.

[ 33 ] Huang Z,Shen X,Tian X,et al.Spatio-temporal inception graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia.Seattle,USA,2020:2122-2130.

[ 34 ] Li M,Chen S,Zhao Y,et al.Dynamic multiscale graph neural networks for 3d skeleton based human motion prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,USA,2020:214-223.

[ 35 ] Liu Z,Zhang H,Chen Z,et al.Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,USA,2020:143-152.

[ 36 ] Chen Z,Li S,Yang B,et al.Multi-scale spatial temporal graph convolutional network for skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Vancouver,Canada,2021,35(2):1113-1122.

[ 37 ] Wang M,Ni B,Yang X.Learning multi-view interactional skeleton graph for action recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,45(6):6940-6954.

[ 38 ] Zhang P,Lan C,Zeng W,et al.Semantics-guided neural networks for efficient skeleton-based human action recognition[C]//proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,USA,2020:1112-1121.

[ 39 ] Zhang X,Xu C,Tao D.Context aware graph convolution for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.Seattle,USA,2020:14333-14342.

[ 40 ] Xie J,Meng Y,Zhao Y,et al.Dynamic semantic-based spatial graph convolution network for skeleton-based human action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Vancouver,Canada,2024,38(6):6225-6233.

[ 41 ] Korban M,Li X.Ddgcn:A dynamic directed graph convolutional network for action recognition[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,2020:761-776.

[ 42 ] Song Y F,Zhang Z,Shan C,et al.Stronger,faster and more explainable:A graph convolutional baseline for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia.Seattle,USA,2020:1625-1633.

[ 43 ] Song Y F,Zhang Z,Shan C,et al.Constructing stronger and faster baselines for skeleton-based action recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(2):1474-1488.

[ 44 ] Yun X,Xu C,Riou K,et al.Behavioral recognition of skeletal data based on targeted dual fusion strategy[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Vancouver,Canada,2024,38(7):6917-6925.

[ 45 ] Cheng K,Zhang Y,Cao C,et al.Decouplinggcn with dropgraph module for skeleton-based action recognition[C]//Computer Vision-ECCV 2020:16th European Conference.Glasgow,UK,2020:536-553.

[ 46 ] Cheng K,Zhang Y,He X,et al.Skeleton-based action recognition with shift graph convolutional network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,USA,2020:183-192.

[ 47 ] Chen Y,Zhang Z,Yuan C,et al.Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal,Canada,2021:13359-13368.

[ 48 ] Liu M,Meng F,Chen C,et al.Novel motion patterns matter for practical skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Washington,USA,2023,37(2):1701-1709.

[ 49 ] Shi W,Li D,Wen Y and Yang W,Occlusion-aware graph neural networks for skeleton action recognition[J].IEEE Transactions on Industrial Informatics,2023,9(10):10288-10298.

[ 50 ] Song S,Liu J,Lin L,et al.Learning to recognize human actions from noisy skeleton data via noise adaptation[J].IEEE Transactions on Multimedia,2021,24:1152-1163.

[ 51 ] Song Y F,Zhang Z,Shan C,et al.Richly activated graph convolutional network for robust skeleton-based action recognition[J].IEEE Transactions on Circuits and Systems for Video Technology,2020,31(5):1915-1925.

[ 52 ] Chen Z,Wang H,Gui J.Occluded Skeleton-Based Human Action Recognition with Dual Inhibition Training[C]//Proceedings of the 31st ACM International Conference on Multimedia.Ottawa,Canada,2023:2625-2634.

[ 53 ] Duan H,Xu M,Shuai B,et al.SkeleTR:Towards skeleton-based action recognition in the wild[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Paris,France,2023:13634-13644.

[ 54 ] Li J,Xie X,Cao Y,et al.Knowledge embedded GCN for skeleton-based two-person interaction recognition [J].Neurocomputing,2021,444:338-348.

[ 55 ] Zhu L,Wan B,Li C,et al.Dyadic relational graph convolutional networks for skeleton-based human interaction recognition [J].Pattern Recognition,2021,115:107920.

[ 56 ] Li S,He X,Song W,et al.Graph diffusion convolutional network for skeleton based semantic recognition of two-person actions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(7):8477-8493.

[ 57 ] Gao F,Xia H,Tang Z.Attention interactive graph convolutional network for skeleton-based human interaction recognition[C]//2022 IEEE International Conference on Multimedia and Expo (ICME).Taipei,China,IEEE,2022:1-6.

[ 58 ] Li Z,Li Y,Tang L,T.Zhang,et al.Two-person graph convolutional network for skeleton-based human interaction recognition[J].IEEE Transactions on Circuits and Systems for Video Technology,2023,33:3333-3342.

[ 59 ] Si C,Nie X,Wang W,et al.Adversarial self-supervised learning for semi-supervised 3d action recognition[C].Computer Vision-ECCV 2020.Glasgow,UK,2020:35-51.

[ 60 ] Li J,Shlizerman E.Sparse semi-supervised action recognition with active learning[EB/OL].(2020-12-03)[2024-06-01].https://arxiv.org/abs/2012.01740.

[ 61 ] Tu Z,Zhang J,Li H,et al.Joint-bone fusion graph convolutional network for semi-supervised skeleton action recognition[J].IEEE Transactions on Multimedia,2023,25:1819-1831.

[ 62 ] Huang K H,Huang Y B,Lin Y X,et al.GRA:Graph representation alignment for semi-supervised action recognition[J].IEEE Transactions on Neural Networks and Learning Systems,2024,1-10.

[ 63 ] Liu J,Shahroudy A,Perez M,et al.Ntu rgb+ d 120:A large-scale benchmark for 3d human activity understanding[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,42(10):2684-2701.

[ 64 ] Sabater A,Santos L,Santos-Victor J,et al.One-shot action recognition in challenging therapy scenarios[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,USA,2021:2777-2785.

[ 65 ] Memmesheimer R,H?ring S,Theisen N,et al.Skeleton-dml:Deep metric learning for skeleton-based one-shot action recognition[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.Waikoloa,USA,2022:3702-3710.

[ 66 ] Ma N,Zhang H,Li X,et al.Learning spatial-preserved skeleton representations for few-shot action recognition[C]//European Conference on Computer Vision.Tel Aviv,Israel,2022:174-191.

[ 67 ] Wang L,Koniusz P.Temporal-viewpoint transportation plan for skeletal few-shot action recognition[C]//Proceedings of the Asian Conference on Computer Vision.Macao,China,2022:4176-4193.

[ 68 ] Wang L,Koniusz P.Uncertainty-dtw for time series and sequences[C]//European Conference on Computer Vision.Tel Aviv,Israel,2022:176-195.

[ 69 ] Yang S,Liu J,Lu S,et al.One-shot action recognition via multi-scale spatial-temporal skeleton matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(7):5149-5156.

[ 70 ] Zhou Y,Qiang W,Rao A,et al.Zero-shot skeleton-based action recognition via mutual information estimation and maximization[C]//Proceedings of the 31st ACM International Conference on Multimedia.Ottawa,Canada,2023:5302-5310.

[ 71 ] Liu X,Zhou S,Wang L,et al.Parallel attention interaction network for few-shot skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Paris,France,2023:1379-1388.

[ 72 ] Zheng N,Wen J,Liu R,et al.Unsupervised representation learning with long-term dynamics for skeleton based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New Orleans,USA,2018:2644-2651.

[ 73 ] Su K,Liu X,Shlizerman E.Predict & cluster:Unsupervised skeleton based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,USA,2020:9631-9640.

[ 74 ] Mao Y,Deng J,Zhou W,et al.Masked motion predictors are strong 3d action representation learners[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Paris,France,2023:10181-10191.

[ 75 ] Yan H,Liu Y,Wei Y,et al.Skeletonmae:Ggraph-based masked autoencoder for skeleton sequence pre-training[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Paris,France,2023:5606-5618.

[ 76 ] Zhu W,Ma X,Liu Z,et al.Motionbert:A unified perspective on learning human motion representations[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Paris,France,2023:15085-15099.

[ 77 ] Zhu Y,Han H,Yu Z,et al.Modeling the relative visual tempo for self-supervised skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Paris,France,2023:13913-13922.

[ 78 ] Yang S,Liu J,Lu S,et al.Self-supervised 3D action representation learning with skeleton cloud colorization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(1):509-524.

[ 79 ] Pang C,Lu X,Lyu L.Skeleton-based action recognition through contrasting two-stream spatial-temporal networks[J].IEEE Transactions on Multimedia,2023,25:8699-8711.

[ 80 ] Shah A,Roy A,Shah K,et al.Halp:Hallucinating latent positives for skeleton-based self-supervised learning of actions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver,Canada,2023:18846-18856.

[ 81 ] He Z,Lv J,Fang S.Representation modeling learning with multi-domain decoupling for unsupervised skeleton-based action recognition[J].Neurocomputing,2024,582:127495.

[ 82 ] Wu C,Wu X J,Kittler J,et al.SCD-Net:Spatiotemporal clues disentanglement network for self-supervised skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Vancouver,Canada,2024,38(6):5949-5957.

[ 83 ] Dong J,Sun S,Liu Z,et al.Hierarchical contrast for unsupervised skeleton-based action representation learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Washington,USA,2023,37(1):525-533.

[ 84 ] Guo T,Liu M,Liu H,et al.Improving self-supervised action recognition from extremely augmented skeleton sequences[J].Pattern Recognition,2024:110333.

[ 85 ] Lin L,Zhang J,Liu J.Actionlet-dependent contrastive learning for unsupervised skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver,Canada,2023:2363-2372.

[ 86 ] Zhang J,Lin L,Liu J.Hierarchical consistent contrastive learning for skeleton-based action recognition with growing augmentations[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Washington,USA,2023,37(3):3427-3435.

[ 87 ] Zhou Y,Duan H,Rao A,et al.Self-supervised action representation learning from partial spatio-temporal skeleton sequences[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Washing,USA,2023,37(3):3825-3833.

[ 88 ] Hua Y,Wu W,Zheng C,et al.Part aware contrastive learning for self-supervised action recognition[EB/OL].(2023-05-01)[2024-06-01].http://arxiv.org/abs/2305.00666.

[ 89 ] Lin L,Song S,Yang W,et al.Ms2l:Multi-task self-supervised learning for skeleton based action recognition[C]//Proceedings of the 28th ACM international conference on multimedia.Seattle,USA,2020:2490-2498.

[ 90 ] Men Q,Ho E S L,Shum H P H,et al.Focalized contrastive view-invariant learning for self-supervised skeleton-based action recognition[J].Neurocomputing,2023,537:198-209.

[ 91 ] Guan S,Yu X,Huang W,et al.DMMG:Dual min-max games for self-supervised skeleton-based action recognition[J].IEEE Transactions on Image Processing,2024,33:395-407.

[ 92 ] Franco L,Mandica P,Munjal B,et al.Hyperbolic self-paced learning for self-supervised skeleton-based action representations[EB/OL].(2023-03-10)[2024-06-01].http://arxiv.org/abs/2303.06242.

[ 93 ] Shahroudy A,Liu J,Ng T T,et al.Ntu rgb+ d:A large scale dataset for 3d human activity analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,USA,2016:1010-1019.

[ 94 ] Liu J,Shahroudy A,Perez M,et al.Ntu rgb+ d 120:A large-scale benchmark for 3d human activity understanding[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,42(10):2684-2701.

[ 95 ] Kay W,Carreira J,Simonyan K,et al.The kinetics human action video dataset[EB/OL].(2017-05-19)[2024-06-01].http://arxiv.org/abs/1705.06950.

[ 96 ] Cao Z,Simon T,Wei S E,et al.Realtime multi-person 2d pose estimation using part affinity fields[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,USA,2017:7291-7299.

[ 97 ] Hu J F,Zheng W S,Lai J,et al.Jointly learning heterogeneous features for RGB-D activity recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston,USA,2015:5344-5352.

[ 98 ] Wang J,Nie X,Xia Y,et al.Cross-view action modeling,learning and recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Columbus,USA,2014:2649-2656.

[ 99 ] Hussein M E,Torki M,Gowayyed M A,et al.Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations[C]//Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence.Beijing,China,2013:2466-2472.

[100] Li W,Zhang Z,Liu Z.Action recognition based on a bag of 3D points[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops.San Framcisco,USA,2010:9-14.

[101] Yun K,Honorio J,Chattopadhyay D,et al.Two-person interaction detection using body-pose features and multiple instance learning[C]//2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.Providence,USA,2012:28-35.

[102] Wang J,Liu Z,Wu Y,et al.Miningactionlet ensemble for action recognition with depth cameras[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition.Providence,USA,2012:1290-1297.

[103] Duan H,Zhao Y,Chen K,et al.Revisiting skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans,USA,2022:2969-2978.

基本信息:

DOI:

中图分类号:TP391.41;TP183

引用信息:

[1]吕蕾,庞辰.基于图卷积网络的人体骨架行为识别方法综述[J].山东师范大学学报(自然科学版),2024,39(03):210-232.

基金信息:

国家自然科学基金资助项目(61976127)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文